SPATIO-TEMPORAL VARIABILITY OF ANNUAL PM2.5 CONCENTRATIONS AND POPULATION EXPOSURE ASSESSMENT IN SERBIA FOR THE PERIOD 2001–2016

Authors

  • Gorica B. Stanojević Geographical Institute ''Jovan Cvijić'' SASA, Physical Geography Department, Belgrade
  • Dragana N. Miljanović Geographical Institute ''Jovan Cvijić'' SASA, Belgrade
  • Dejan Lj. Doljak Geographical Institute ''Jovan Cvijić'' SASA, Belgrade
  • Nina B. Ćurčić Geographical Institute ''Jovan Cvijić'' SASA, Belgrade
  • Milan M. Radovanović South Ural State University, Institute of Sport, Tourism and Service, Chelyabinsk; Geographical Institute ''Jovan Cvijić'' SASA, Belgrade
  • Slavica B. Malinović-Milićević University of Novi Sad, ACIMSI – University Center for Meteorology and Environmental Modelling, Novi Sad
  • Olena Hauriak Yuriy Fedkovych Chernivtsi National University, Department of Physical Culture and Basics of Health Studies, Chernivtsi

DOI:

https://doi.org/10.2298/IJGI1903197S

Keywords:

air pollution, PM2.5, trend, population exposure, Serbia

Abstract

The long-term exposure to PM2.5 (particulate matter with aerodynamic diameter ≤ 2.5 μm) is the leading global health risk factor. The spatio-temporal variability of annual values of the total PM2.5 concentrations in Serbia is analyzed using the high-resolution (0.01° × 0.01°) gridded data set V4.EU.02 for the period 2001–2016. Population counts and density data were used to calculate the population exposure while the urban land cover data were used to estimate the relations between the size of urban area and the concentration of PM2.5. The mean annual values vary in the range 13.93 μg/m3–28.91 μg/m3. The regional differences exist, but the highest values were obtained for urban environments (> 22.5 μg/m3). Negative trend of annual PM2.5 is present in most of the parts of the Serbian territory, especially in the eastern parts reaching –0.37 μg/m3 per year (p ≤ .05). More than 99% of the territory of Serbia has the mean annual values under the national safe limit established by regulation (25 μm/m3), but comparing to the World Health Organization (WHO) guideline (10 μm/m3), all the territory is above the safe level. In line with the trend of urbanization, there is a clear upward trend in the number of population exposed to the higher concentrations of PM2.5. The share of the population exposed to values higher than 25 μg/m3 increased from 6.65% in 2005 to 11.40% in 2015, while comparing to WHO standard, the total population in Serbia is exposed to the values higher than the safe one.

Article metrics

References

Aničić, M., Spasić, T., Tomašević, M., Rajšić, S., & Tasić, M. (2011). Trace elements accumulation and temporal trends in leaves of urban deciduous trees (Aesculus hippocastanum and Tilia spp.). Ecological Indicators, 11(3), 824–830. https://doi.org/10.1016/j.ecolind.2010.10.009

Atmospheric Composition Analysis Group. (n.d.). Surface PM2.5: European Regional Estimates (V4.EU.02) [Data set]. Retrieved from http://fizz.phys.dal.ca/~atmos/martin/?page_id=140

Bai, K., Ma, M., Chang, N.-B., & Gao, W. (2019). Spatiotemporal trend analysis for fine particulate matter concentrations in China using high-resolution satellite-derived and ground-measured PM2.5 data. Journal of Environmental Management, 233, 530–542. https://doi.org/10.1016/j.jenvman.2018.12.071

Beelen, R., Hoek, G., van den Brandt, P. A., Goldbohm, R. A., Fischer, P., Schouten, L. J., . . . Brunekreef, B. (2008). Long-Term Effects of Traffic-Related Air Pollution on Mortality in a Dutch Cohort (NLCS-AIR Study). Environmental Health Perspectives, 116(2), 196–202. https://doi.org/10.1289/ehp.10767

Boys, B. L., Martin, R. V., van Donkelaar, A., MacDonell, R. J., Hsu, N. C., Cooper, M. J., . . . Wang, S. W. (2014). Fifteen-Year Global Time Series of Satellite-Derived Fine Particulate Matter. Environmental Science and Technology, 48(19), 11109–11118. https://doi.org/10.1021/es502113p

Brauer, M., Hoek, G., van Vliet, P., Meliefste, K., Fischer, P., Gehring, U., . . . Brunekreef, B. (2003). Estimating longterm average particulate air pollution concentrations: application of traffic indicators and geographic information systems. Epidemiology, 14(2), 228–239. https://doi.org/10.1097/01.EDE.0000041910.49046.9B

Brunekreef, B., & Holgate, S. T. (2002). Air pollution and health. The Lancet, 360(9341), 1233–1242. https://doi.org/10.1016/S0140-6736(02)11274-8

Center for International Earth Science Information Network [CIESIN]. (2018a). Gridded Population of the World, Version 4 (GPW, v4): Population Count Adjusted to Match 2015 Revision of UN WPP Country Totals, Revision 11. https://doi.org/10.7927/H4JW8BX5

Center for International Earth Science Information Network [CIESIN]. (2018b). Gridded Population of the World, Version 4 (GPW, v4): Population Density Adjusted to Match 2015 Revision UN WPP Country Totals, Revision 11. https://doi.org/10.7927/H4F47M65

Cheng, B., & Wang-Li, L. (2019). Spatial and Temporal Variations of PM2.5 in North Carolina. Aerosol and Air Quality Research, 19(4), 698–710. https://doi.org/10.4209/aaqr.2018.03.0111

Cohen, A. J., Brauer, M., Burnett, A., Anderson, H. R., Frostad, J., Estep, K., . . . Forouzanfart, M. H. (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. The Lancet, 389(10082), 1907–1918. https://doi.org/10.1016/S0140-6736(17)30505-6

Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., . . . Böhner, J. (2015). System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development, 8, 1991–2007. https://doi.org/10.5194/gmd-8-1991-2015

Cvetković, Ž., Logar, M., Rosić, A., & Ćirić, A. (2012). Mineral composition of the airborne particles in the coal dust and fly ash of the Kolubara basin (Serbia). Periodico di Mineralogia, 81(2), 205–223. https://doi.org/10.2451/2012PM0012

Djordjevic, P., Nikolic, Dj., Jovanovic, I., Mihajlovic, I., Savic, M., & Zivkovic, Z. (2013). Episodes of extremely high concentrations of SO2 and particulate matter in the urban environment of Bor, Serbia. Environmental Research, 126, 204–207. https://doi.org/10.1016/j.envres.2013.05.002

Drobnjaković, M., & Spalević, A. (2017). Naselja Srbije (The settlements in Serbia). In M. Radovanović (Ed.), Geografija Srbije (Geography of Serbia) (pp. 566–613). Belgrade, Serbia: Geografski institute „Jovan Cvijić” SANU.

European Environment Agency. (2013). European Digital Elevation Model (EU-DEM), version 1.1 [Data set]. Retrieved from https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1?tab=download

European Environment Agency. (2018). Air quality in Europe — 2018 report, EEA Report No 12/2018. Retrieved from https://www.eea.europa.eu/publications/air-quality-in-europe-2018/air-quality-in-europe-2018/viewfile#pdfjs.action=download

European Environment Agency. (2019). Emissions of the main air pollutants in Europe. Retrieved from https://www.eea.europa.eu/downloads/87a94e27cde74821b15b48e77e062b69/1567590774/assessment-6.pdf

European Parliament, & Council of the European Union. (2008). Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008: On Ambient Air Quality and Cleaner Air for Europe. Retrieved from https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0050&from=en

European Parliament, & Council of the European Union. (2013). Decision No 1386/2013/EU оf the European Parliament and of the Council of 20 November 2013 on a General Union Environment Action Programme to 2020 ‘Living well, within the limits of our planet’. Retrieved from http://eur-lex.europa.eu/legalcontent/EN/TXT/PDF/?uri=CELEX:32013D1386&from=EN

Fuzzi, S., Baltensperger, U., Carslaw, K., Decesari, S., Denier van der Gon, H., Facchini, M. C., . . . Gilardoni, S. (2015). Particulate matter, air quality and climate: lessons learned and future needs. Atmospheric Chemistry and Physics, 15, 8217–8299. https://doi.org/10.5194/acp-15-8217-2015

Giannadaki, D., Giannakis, E., Pozzer, A., & Lelieveld, J. (2018). Estimating health and economic benefits of reductions in air pollution from agriculture. Science of the Total Environment, 622–623, 1304–1316. https://doi.org/10.1016/j.scitotenv.2017.12.064

Hadžić, M., & Zeković, S. (2019). Rethinking deindustrialization, and the reindustrialization policy in Serbia. Spatium, 41, 14–22. https://doi.org/10.2298/SPAT1941014H

Joksić, J. D., Jovašević-Stojanović, M., Bartonova, A., Radenković, M. B., Yttri, K.-E., Matić-Besarabić, S., & Ignjatović, Lj. (2009). Physical and chemical characterization of the particulate matter suspended in aerosols from the urban area of Belgrade. Journal of the Serbian Chemical Society, 74(11), 1319–1333. https://doi.org/10.2298/JSC0911319J

Jovanović, M. (Ed.). (2019). Godišnji izveštaj o stanju kvaliteta vazduha u Republici Srbiji 2018. godine [Annual report on the state of air quality in the Republic of Serbia in 2018]. Retrieved from http://www.sepa.gov.rs/download/izv/Vazduh2018_final.pdf

Jovašević-Stojanović, M., Bartonova, A., Topalović, D., Lazović, I., Pokrić, B., & Ristovski, Z. (2015). On the use of small and cheaper sensors and devices for indicative citizen-based monitoring of respirable particulate matter. Environmental Pollution, 206, 696–704. https://doi.org/10.1016/j.envpol.2015.08.035

Karagulian, F., Belis, C. A., Dora, C. F. C., Prüss-Ustün, A. M., Bonjour, S., Adair-Rohani, H., & Amann, M. (2015). Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmospheric Environment, 120, 475–483. http://dx.doi.org/10.1016/j.atmosenv.2015.08.087

Kiesewetter, G., & Amann, M. (2014). Urban PM2.5 levels under the EU Clean Air Policy Package (TSAP Report #12). Retrieved from https://ec.europa.eu/environment/air/pdf/TSAP_12.pdf

Kokotović Kanazir, V., Stojilković Gnjatović, J., Filipović, M., Babović, S., Ivković, M., & Lović Obradović, S. (2017). Stanovništvo Srbije (Population of Serbia). In M. Radovanović (Ed.) Geografija Srbije (Geography of Serbia) (pp. 506–613). Belgrade, Serbia: Geografski institute „Jovan Cvijić” SANU.

Kovačević, G. C. (2019). Procena uticaja kvaliteta vazduha na pogoršanje alergijskog rinitisa i astme (Doktorska disertacija) [Assessment of the air quality impact on allergic rhinitis and asthma exacerbation (Doctoral dissertation)]. Univerzitet u Beogradu, Medicinski fakultet, Beograd. Retrieved from http://uvidok.rcub.bg.ac.rs/bitstream/handle/123456789/3322/Doktorat.pdf?sequence=1

Krunić Lazić, M. (Ed.). (2018). Privredni potencijali i aktivnosti od značaja za životnu sredinu Republike Srbije 2017. [The economic potential and activities of importance to the environment in the Republic of Serbia in 2017]. Retrieved from https://www.sepa.gov.rs/download/posebni/Privredne_aktivnosti_2017.pdf

Larkin, А., van Donkelaar, А., Geddes, Ј. А., Martin, R. V., & Hystad, P. (2016). Relationships between Changes in Urban Characteristics and Air Quality in East Asia from 2000 to 2010. Environmental Science & Technology, 50(17), 9142–9149. https://doi.org/10.1021/acs.est.6b02549

Lekić, D. (Ed.). (2018). Izveštaj o stanju životne sredine u Republici Srbiji za 2017. godinu [The report on the environmental situation in the Republic of Serbia for 2017]. Retrieved from http://www.sepa.gov.rs/download/Izvestaj_2017.pdf

Li, Ј., Han, X., Jin, M., Zhang, X., & Wang, S. (2019). Globally analysing spatiotemporal trends of anthropogenic PM2.5 concentration and population’s PM2.5 exposure from 1998 to 2016. Environment International, 128, 46–62. https://doi.org/10.1016/j.envint.2019.04.026

Lu, D., Mao, W., Yang, D., Zhao, J., & Xu, J. (2018). Effects of land use and landscape pattern on PM2.5 in Yangtze River Delta, China. Atmospheric Pollution Research, 9(4), 705–713. https://doi.org/10.1016/j.apr.2018.01.012

Malinović-Milićević, S. B., Mihailović, D. T., Nikolić-Đorić, E. B., & Jevtić, M. R. (2015). Gaseous and particulate urban air pollution in the region of Vojvodina (Serbia). Matica Srpska Journal of Natural Sciences, 128, 87–97. https://doi.org/10.2298/ZMSPN1528087M

Perrone, M. G., Vratolis, S., Georgieva, E., Török, S., Šega, K., Veleva, B., . . . Belis, C. A. (2018). Sources and geographic origin of particulate matter in urban areas of the Danube macro-region: The cases of Zagreb (Croatia), Budapest (Hungary) and Sofia (Bulgaria). Science of the Total Environment, 619–620, 1515–1529. https://doi.org/10.1016/j.scitotenv.2017.11.092

Pope III, C. A., & Dockery, D. W. (2006). Health Effects of Fine Particulate Air Pollution: Lines that Connect. Journal of the Air & Waste Management Association, 56(6), 709–742. https://doi.org/10.1080/10473289.2006.10464485

Querol, X., Alastuey, А., Moreno, Т., Viana, M. M., Castillo, S., Pey, J., . . . Sánchez de la Campa, A. (2008). Spatial and temporal variations in airborne particulate matter (PM10 and PM2.5) across Spain 1999–2005. Atmospheric Environment, 42(17), 3964–3979. https://doi.org/10.1016/j.atmosenv.2006.10.071

Radović, F., & Jovanović, M. (Eds.). (2017). Godišnji izveštaj o stanju kvaliteta vazduha u Republici Srbiji 2016. godine [Annual report on the state of air quality in the Republic of Serbia in 2016]. Retrieved from http://www.sepa.gov.rs/download/VAZDUH2016.pdf

Radović, F., & Jovanović, M. (Eds.). (2018). Godišnji izveštaj o stanju kvaliteta vazduha u Republici Srbiji 2017. godine [Annual report on the state of air quality in the Republic of Serbia in 2017]. Retrieved from http://www.sepa.gov.rs/download/VAZDUH2017.pdf

Rajšić, S. F., Tasić, M. D., Novaković, V. T., & Tomašević, M. N. (2004). First Assessment of the PM10 and PM2.5 Particulate Level in the Ambient Air of Belgrade City. Environmental Science and Pollution Research, 11(3), 158–164. https://doi.org/10.1007/BF02979670

Reizer, M., & Juda-Rezler, K. (2016). Explaining the high PM10 concentrations observed in Polish urban areas. Air Quality, Atmosphere & Health, 9(5), 517–531. https://doi.org/10.1007/s11869-015-0358-z

Rogula-Kozłowska, W., Klejnowski, K., Rogula-Kopiec, P., Ośródka, L., Krajny, E., Błaszczak, B., & Mathews, B. (2014). Spatial and seasonal variability of the mass concentration and chemical composition of PM2.5 in Poland. Air Quality, Atmosphere & Health, 7(1), 41–58. https://doi.org/10.1007/s11869-013-0222-y

Saarikoski, S. K., Sillanpää, M. K., Saarnio, K. M., Hillamo, R. E., Pennanen, A. S., & Salonen, R. O. (2008). Impact of Biomass Combustion on Urban Fine Particulate Matter in Central and Northern Europe. Water, Air, & Soil Pollution, 191(1–4), 265–277. https://doi.org/10.1007/s11270-008-9623-1

Samek, L., Stegowski, Z., Furman, L., Styszko, K., Szramowiat, K., & Fiedor, J. (2017). Quantitative Assessment of PM2.5 Sources and Their Seasonal Variation in Krakow. Water, Air, & Soil Pollution, 228(8), 290. https://doi.org/10.1007/s11270-017-3483-5

Shaddick, G., Thomas, M. L., Amini, H., Broday, D., Cohen, А., Frostad, J., . . . Brauer, M. (2018). Data Integration for the Assessment of Population Exposure to Ambient Air Pollution for Global Burden of Disease Assessment. Environmental Science & Technology, 52, 9069–9078. https://doi.org/10.1021/acs.est.8b02864

Shisong, C., Wenji, Z., Hongliang, G., Deyong, H., You, M., Wenhui, Z., & Shanshan, L. (2018). Comparison of remotely sensed PM2.5 concentrations between developed and developing countries: Results from the US, Europe, China, and India. Journal of Cleaner Production, 182, 672–681. https://doi.org/10.1016/j.jclepro.2018.02.096

Stamenković, S., Djekić, T., Ristić, S., Novković, V., Mitrović, T., & Marković, M. (2016). Air quality lichen monitoring at three selected urban areas in the Southern Serbia. Biologica Nyssana, 7(1), 19–29. http://doi.org/10.5281/zenodo.159100

Statistical Office of the Republic of Serbia. (2013). Popis stanovništva, domaćinstava i stanova 2011. u Republici Srbiji: Knjiga 30. Stanovi prema vrsti energenta za grejanje, podaci po opštinama/gradovima [2011 Census of Population, Households and Dwellings in the Republic of Serbia: Book 30. Dwellings by the type of energy raw material used for heating, data by municipalities/cities]. Retrieved from https://publikacije.stat.gov.rs/G2013/Pdf/G20134023.pdf

Statistical Office of the Republic of Serbia. (2014). Popis stanovništva, domaćinstava i stanova 2011. u Republici Srbiji: Knjiga 20. Uporedni pregled broja stanovnika 1948, 1953, 1961, 1971, 1981, 1991, 2002. i 2011., podaci po naseljima [Comparative overview of the number of population in 1948, 1953, 1961, 1971, 1981, 1991, 2002 and 2011, data by settlements]. Retrieved from http://publikacije.stat.gov.rs/G2014/Pdf/G20144008.pdf

Statistical Office of the Republic of Serbia. (2019). Statistički godišnjak Republike Srbije 2019 [Statistical Yearbook оf the Republic of Serbia 2019]. Retrieved from https://publikacije.stat.gov.rs/G2019/Pdf/G20192052.pdf

Stevanović, I., Jovašević-Stojanović, M., & Jović Stošić, J. (2016). Association between ambient air pollution, meteorological conditions and exacerbations of asthma and chronic obstructive pulmonary disease in adult citizens of the town of Smederevo. Vojnosanitetski pregled, 73(2), 152–158. https://doi.org/10.2298/VSP141111026S

Šerbula, S. M., Antonijević, M. M., Milošević, N. M., Milić, S. M., & Ilić, A. A. (2010). Concentrations of particulate matter and arsenic in Bor (Serbia). Journal of Hazardous Materials, 181(1–3), 43–51. https://doi.org/10.1016/j.jhazmat.2010.04.065

Tasic, M., Rajsic, S., Novakovic, V., & Mijic, Z. (2007). An assessment of air quality in Belgrade urban area: PM10, PM2.5 and trace metals. Journal of Physics: Conference Series, 71, 012016. Retrieved from https://iopscience.iop.org/article/10.1088/1742-6596/71/1/012016/pdf

Tasić, M, Rajšić, S., Novaković, V., & Mijić, Z. (2006). Atmospheric aerosols and their influence on air quality in urban areas. Facta Universitatis, Series: Physics, Chemistry and Technology, 4(1), 83–91. Retrieved from https://pdfs.semanticscholar.org/85fd/694e5872932c74d6260301311f6f72f59308.pdf

Tasić, V. (2017). Using low-cost sensors and systems for air pollution monitoring. Proceedings of 5th International Conference on Renewable Electrical Power Sources, 5(1), 11–19. https://doi.org/10.24094/mkoiee.017.5.1.11

Tasić, V., Milošević, N., Kovačević, R., Jovašević-Stojanović, M., & Dimitrijević, M. (2012). Indicative levels of PM in the ambient air in the surrounding villages of the copper smelter complex Bor, Serbia. Chemical Industry & Chemical Engineering Quarterly, 18(4–2), 643-652, https://doi.org/10.2298/CICEQ111228109T

Todorović, M. N., Radenković, M. B., Rajšić, S. F., & Ignjatović, Lj. M. (2019). Evaluation of mortality attributed to air pollution in the three most populated cities in Serbia. International Journal of Environmental Science and Technology, 16(11), 7059–7070. https://doi.org/10.1007/s13762-019-02384-6

United Nations. (2015). Transforming our world: the 2030 Agenda for Sustainable Development. Retrieved from https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_70_1_E.pdf

Uredba o uslovima za monitoring i zahtevima kvaliteta vazduha [Regulation on Monitoring Conditions and Air Quality Requirements]. Službeni glasnik Republike Srbije br. 11 (2010); 75 (2010); 63 (2013).

van Donkelaar, A., Martin, R. V., Brauer, M., & Boys, B. L. (2015). Use of Satellite Observations for Long-Term Exposure Assessment of Global Concentrations of Fine Particulate Matter. Environmental Health Perspectives, 123(2), 135-143. https://doi.org/10.1289/ehp.1408646

van Donkelaar, A., Martin, R. V., Brauer, M., Hsu, N. C., Kahn, R. A., Levy, R. C., . . . Winker, D. M. (2016). Global Estimates of Fine Particulate Matter using a Combined Geophysical-Statistical Method with Information from Satellites, Models, and Monitors. Environmental Science & Technology, 50(7), 3762–3772. https://doi.org/10.1021/acs.est.5b05833

van Donkelaar, A., Martin, R. V., Li, C., & Burnett, R. T. (2019). Regional Estimates of Chemical Composition of Fine Particulate Matter using a Combined Geoscience-Statistical Method with Information from Satellites, Models, and Monitors. Environmental Science & Technology, 53(5), 2595–2611. https://doi.org/10.1021/acs.est.8b06392

van Donkelaar, A., Martin, R. V., Brauer, M., Kahn, R., Levy, R., Verduzco, C., & Villeneuve, P. J. (2010). Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth: Development and Application. Environmental Health Perspectives, 118(6), 847-855. https://doi.org/10.1289/ehp.0901623

Vicente, E. D., & Alves, C. A. (2018). An overview of particulate emissions from residential biomass combustion. Atmospheric Research, 199, 159–185. https://doi.org/10.1016/j.atmosres.2017.08.027

Vodonos, A., Awad, Y. A., & Schwartz, J. (2018). The concentration-response between long-term PM2.5 exposure and mortality; A meta-regression approach. Environmental Research, 166, 677–689. https://doi.org/10.1016/j.envres.2018.06.021

Vuković, G., Aničić Urošević, M., Pergal, M., Janković, M., Goryainova, Z., Tomašević, M., & Popović, A. (2015). Residential heating contributon to level air pollutants (PAHs, major, trace, and rare earth elements): a moss bag case study. Environmental Science and Pollution Ressearch, 22(23), 18956–18966. https://doi.org/10.1007/s11356-015-5096-0

Wang, P., Huang, C., Brown de Colstoun, E. C., Tilton, J. C., & Tan, B. (2017). Global Human Built-up And Settlement Extent (HBASE) Dataset From Landsat. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/H4DN434S

Wang, Q., Kwan, M.-P., Zhou, K., Fan, J., Wang, Y., & Zhan, D. (2019). The impacts of urbanization on fine

particulate matter (PM2.5) concentrations: Empirical evidence from 135 countries worldwide. Environmental Pollution, 247, 989–998. https://doi.org/10.1016/j.envpol.2019.01.086

World Health Organization. (2018). Burden of disease from ambient air pollution for 2016. Retrieved from https://www.who.int/airpollution/data/AAP_BoD_results_May2018_final.pdf

World Health Organization Regional Office for Europe. (2017). Evolution of WHO air quality guidelines: past, present and future. Retrieved from http://www.euro.who.int/__data/assets/pdf_file/0019/331660/Evolutionair-quality.pdf

World Health Organization. (2006). WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: Global update 2005 – Summary of Risk Assessment. Retrieved from https://apps.who.int/iris/bitstream/handle/10665/69477/WHO_SDE_PHE_OEH_06.02_eng.pdf?sequence=1&isAllowed=y

World Health Organzation Regional Office for Europe. (2019). Health impact of ambient air pollution in Serbia – a Call to action. Retrieved from http://www.euro.who.int/__data/assets/pdf_file/0020/412742/Health-impactpollution-Serbia.pdf?ua=1

Xiao, Q., Ma, Z., Li, S., & Liu, Y. (2015). The Impact of Winter Heating on Air Pollution in China. PLoS ONE, 10(1), e0117311. https://doi.org/10.1371/journal.pone.0117311

Yang, D., Ye, C., Wang, X., Lu, D., Xu, J., & Yang, H. (2018). Global distribution and evolvement of urbanization and PM2.5 (1998–2015). Atmospheric Environment, 182, 171–178. https://doi.org/10.1016/j.atmosenv.2018.03.053

Downloads

Published

2019-12-19

How to Cite

B. Stanojević, G. ., N. Miljanović, D. ., Lj. Doljak, D. ., B. Ćurčić, N. ., M. Radovanović, M. ., B. Malinović-Milićević, S. ., & Hauriak, O. . (2019). SPATIO-TEMPORAL VARIABILITY OF ANNUAL PM2.5 CONCENTRATIONS AND POPULATION EXPOSURE ASSESSMENT IN SERBIA FOR THE PERIOD 2001–2016. Journal of the Geographical Institute “Jovan Cvijić” SASA, 69(3), 197–211. https://doi.org/10.2298/IJGI1903197S