• Boško Milovanović Geographical Institute “Jovan Cvijić” SASA, Belgrade
  • Kaoru Takara Kyoto University, Graduate School of Advanced Integrated School for Human Survivability (GSAIS), Kyoto
  • Milan Radovanović Geographical Institute “Jovan Cvijić” SASA, Belgrade
  • Milovan Milivojević Geographical Institute “Jovan Cvijić” SASA, Belgrade
  • Jasmina M. Jovanović University of Belgrade, Faculty of Geography, Belgrade



absolute maximum air temperatures, frequency analysis, annual maximum series, Serbia


This paper describes the frequency analysis of absolute maximum air temperatures, using annual maximum series (AMS) in the period 1961–2010 from 40 climatological stations in Serbia with maximum likelihood estimation of distribution parameters. For the goodness of fit testing of General Extreme Value (GEV), Normal, Log-Normal, Pearson 3 (three parameters), and Log-Pearson 3 distribution, three different tests were used (Kolmogorov-Smirnov, Anderson-Darling, chi-square). Based on the results of these tests (best average rank of certain distribution), the appropriate distribution is selected. GEV distribution proved to be the most appropriate one in most cases. The probability of exceedance of absolute maximum air temperatures on 1%, 0.5%, 0.2%, and 0.1% levels are calculated. A spatial analysis of the observed and modeled values of absolute maximum air temperatures in Serbia is given. The absolute maximum air temperature of 44.9 °C was recorded at Smederevska Palanka station, and the lowest value of maximum air temperature 35.8 °C was recorded at Zlatibor station, one of the stations with the highest altitude. The modeled absolute maximum air temperatures are the highest at Zaječar station with 44.5 °C, 45.6 °C, 47.0 °C, and 48.0 °C and the lowest values are calculated for Sjenica station with 35.5 °C, 35.8 °C, 36.1 °C, and 36.2 °C for the return periods of 100, 200, 500, and 1000 years, respectively. Our findings indicate the possible occurrence of much higher absolute maximum air temperatures in the future than the ones recorded on almost all of the analyzed stations.

Article metrics


Alexandrov, V. (2005). Variability of Maximum and Minimum Air Temperature in Bulgaria. Geophysical Research Abstracts, 7, Article 01461,

Anderson, T. W., & Darling, D. A. (1954). A Test of Goodness of Fit. Journal of American Statistical Association, 49(268), 765–769.

Andjelković, G. (2005). Beogradsko urbano ostrvo toplote [Belgrade heat island]. Geografski fakultet Univerziteta u Beogradu.

Andjelković, G. (2007). Temperature conditions on July 2007 as extreme climatic phenomenon in Serbia. Glasnik Srpskog geografskog društva, 87(2), 51–62.

Arsenović, D., Lužanin, Z., Milošević, D., Dunjić, J., Nikitović, V., & Savić, S. (2023). The effects of summer ambient temperature on total mortality in Serbia. International Journal of Biometeorology, 67(10),1581–1589.

Arsenović, D., Savić, S., Lužanin, Z., Radić, I., Milošević, D., & Arsić, M. (2019). Heat-related Mortality as an Indicator of Population Vulnerability in a Mid-sized Central European City (Novi Sad, Serbia, Summer 2015). Geographica Pannonica, 23, 204–215.

Auld, G., Hegerl, G., & Papastathopoulos, I. (2021). Changes in the distribution of observed annual maximum temperatures in Europe (arXiv:2112.15117). arXiv.

Basu, R. (2009). High ambient temperature and mortality: a review of epidemiologic studies from 2001 to 2008. Environmental Health, 8, Article 40.

Branković, Č., Cindrić, K., Gajić-Čapka, M., Pandžić, K., Patarčić, M., Srnec, L., Tomašević, I., Vučetić, V., & Zaninović, K. G. (2013). Sixth National Communication Report of the Republic of Croatia under the United Nations Framework Convention on the Climate Change (UNFCCC). Selected Sections in Chapters: 7-Climate Change Impacts and Adaptation Measures, Research, Systematic Observation and Monitoring. Croatian Meteorological and Hydrological Service.

Brás, T. A., Seixas, J., Carvalhais, N., & Jägermeyr, J. (2021). Severity of drought and heatwave crop losses tripled over the last five decades in Europe. Environmental Research Letters, 16(6), Article 065012

Burić, D., Luković, J., Ducić, V., Dragojlović, J., & Doderović, M. (2014). Recent trends in daily temperature extremes over southern Montenegro (1951–2010). Natural Hazards and Earth System Sciences, 14(1), 67–72.

Chervenkov, H., & Malcheva, K. (2023). Extreme Heat Events over Southeast Europe Based on NEX-GDDP Ensemble: Present Climate Evaluation and Future Projections. Atmosphere, 14(6), Article 1000.

Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer.

Croitoru, A. E., & Piticar, A. (2013). Changes in daily extreme temperatures in the extra-Carpathians regions of Romania. International Journal of Climatology, 33(8), 1987–2001.

Dankers, R., & Hiederer, R. (2008). Extreme Temperatures and Precipitation in Europe: Analysis of a High-Resolution Climate Change Scenario. Europian Commission; Joint Research Centre; Institute for Environment and Sustainability.

dos Reis, C. J., Souya, A., Graf, R., Kossowski, M. T., Abreu, M. C., de Oliveira-Junior, J. C., & Fernandes, W. A. (2022). Modeling of the air temperature using the Extreme Value Theory for selected biomes in Mato Grosso do Sul (Brazil). Stochastic Environmental Research and Risk Assessment, 36(10), 3499–3516.

Drljača, V., Tošić, I., & Unkašević, M. (2009). Analiza toplotnih talasa pomoću klimatsкog indeкsa u Beogradu i Nišu [An analysis of heat waves in Belgrade and Niš using the climate index]. Journal of the Geographical Institute “Jovan Cvijić“ SASA, 59(1), 49–62.

European Environmental Agency. (2017). Climate change, impacts and vulnerability in Europe 2016: an indicator-based report (EEA Report No. 1/2017). European Environmental Agency.

Gençay, R., & Selçuk, F. (2004). Extreme value theory and Value-at-Risk: Relative performance in emerging markets. International Journal of Forecasting, 20(2), 287–303.

Goubanova, K., & Li, L. (2007). Extremes in temperature and precipitation around the Mediterranean basin in an ensemble of future climate scenario simulations. Global and Planetary Change, 57(1–2), 27–42.

Gumbel, E. (1958). Statistics of extremes. Columbia University Press.

Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes. Effect on plant growth and development. Weather and Climate Extremes, 10, 4–10.

Hyndman, R. J., & Fan, S. (2010). Density Forecasting for Long-Term Peak Electricity Demand. IEEE Transactions on Power Systems, 25(2), 1142–1153.

Intergovernmental Panel on Climate Changes. (2012). Managing risks of extreme events and disasters to advance climate change adaptation. A special report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press.

Klein Tank, A. M. G., Zwiers, F., & Zhang, X. (2009). Guidelines on Analysis of Extremes in a Changing Climate in Support of Informed Decision for Adaptation. WMO.

Kottegoda, N. T., & Rosso, R. (2008). Applied statistics for civil and environmental engineers. Blackwell Pub.

Kuglitsch, F. G., Toreti, A., Xoplaki, E., Della-Marta, P. M., Zerefos, C. S., Türkeş, M., & Luterbacher, J. (2010). Heat wave changes in the eastern Mediterranean since 1960. Geophysical Research Letters, 37(4), Article L04802.

Kyselý, J. (2002). Probability Estimates of Extreme Temperature Events: Stochastic Modelling Approach vs. Extreme Value Distributions. Studia Geophysica and Geodaetica, 46, 93–112.

Law, A. M., & Kelton, W. D. (1991). Simulation modeling and analysis. Mc. Graw-Hill Inc.

Lazoglou, G., Anagnostopoulou, C., Tolika, K., & Kolyva-Machera, F. (2019). A review of statistical methods to analyze extreme precipitation and temperature events in the Mediterranean region. Theoretical and Applied Climatology, 136, 99–117.

Lilliefors, H. W. (1967). On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown. Journal of the American Statistical Association, 62(318), 399–402.

Mathison, S. (1988). Why triangulate? Educational Researcher, 17(2), 13–17.

MathWave Technologies. (2022). EasyFit (5.0 trial version) [Computer software].

Meehl, G. A., & Tebaldi, C. (2004). More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century. Science, 305(5686), 994–997.

Milovanović, B., Schuster, P., Radovanović, M., Ristić Vakanjac, V., & Schneider, C. (2017). Spatial and temporal variability of precipitation in Serbia for the period 1961–2010. Theoretical and Applied Climatology, 130(1), 687–700.

Milovanović, B., Ducić, V., Radovanović, M., & Milivojević, M. (2017). Climate Regionalization of Serbia According to Köppen Climate Classification. Journal of the Geographical Institute “Jovan Cvijić” SASA, 67(2), 103–114.

Milovanović, B., Radovanović, M., Stanojević, G., Pecelj, M., & Nikolić, J. (2017). Klima Srbije [Climate of Serbia]. In M. Radovanović (Ed.), Geografija Srbije (Posebna izdanja, Knjiga 91) [Geography of Serbia (Special issues, Book 91)] (pp. 94–156). Geografski institut „Jovan Cvijić“ SANU.

Nakai, S., Itoh, T., & Morimoto, T. (1999). Deaths from heat stroke in Japan: 1968–1994. International Journal of Biometeorology, 43, 124–127.

Plavšić, J. (2006). Neizvesnost u analizi velikih voda metodom parcijalnih serija [Uncertainties in flood frequency estimation by partial duration series]. Vodoprivreda, 38, 41–50.

Popov, T., Gnjato, S., Trbić, G., & Ivanišević, M. (2018). Recent trends in extreme temperature indices in Bosnia and Herzegovina. Carpathian Journal of Earth and Environmental Sciences, 13(1), 211–224.

Reiss, R.-D., & Thomas, M. (2007). Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields (3rd ed.) Birkhäuser.

Republic Hydrometeorological Service of Serbia (2022). Meteorološki godišnjak - klimatološki podaci [Meteorological yearbook - climatological data]

Ruml, M., Gregorić, E., Vujadinović, M., Radovanović, S., Matović, G., Vuković, A., Počuča, V., & Stojičić, D. (2017). Observed changes of temperature in Serbia over the period 1961 − 2010. Atmospheric Research, 183, 26–41.

Russo, S., Sillmann, J., & Fischer, E. (2015). Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environmental Research Letters, 10(12), Article 124003.

Rypkema, D., & Tuljapurkar, S. (2021). Chapter 2 – Modeling extreme climatic events using the generalized extreme value (GEV) distribution. In A. S. R. S. Rao & C. R. Rao (Eds.), Data Science: Theory and Applications (Vol. 44, pp. 39–71). Elsevier.

Shin, H., Jung, Y., Jeong, C., & Heo, J. H. (2012). Assessment of modified Anderson-Darling test statistics for the generalized extreme value and generalized logistic distributions. Stochastic Environmental Research and Risk Assessment, 26, 105–114.

Stanojević, G., Spalević, A. B., Kokotović, V., & Stojilković, J. N. (2014). Does Belgrade (Serbia) need heat health warning system? Disaster Prevention and Management, 23(5), 494–507.

Takara, K., & Stedinger, J. (1994). Recent Japanese contribution to frequency analysis and quantile lower bound estimator. In K. W. Hipel (Ed.), Stochastic and Statistical Methods in Hydrology and Environmental Engineering: Vol 1. Extreme Values: Floods and Droughts (pp. 217–234). Kluwer.

Takara, K., & Takasao, T. (1988). Criteria for Evaluating Probability Distribution Models in Hydrologic Frequency Analysis. Doboku Gakkai Ronbunshu, 1988(393), 151–160.

Tanaka, S. (2020). Comparison of AMS and POT Analysis with Long Historical Precipitation and Future Change Analysis Using „d4PDF“. In N. Hoshino, M. Shuhei, & T. Shimura (Eds.), Pioneering works on Extreme Value Theory. In Honor of Masaaki Sibuva (pp. 93–112). Springer.

Vuković Vimić, A., Djurdjević, V., Ranković-Vasić, Z., Nikolić, D., Ćosić, M., Lipovac, A., Cvetković, B., Sotonica, D., Vojvodić, D., & Vujadinović Mandić, M. (2022). Enhancing Capacity for Short-Term Climate Change Adaptations in Agriculture in Serbia: Development of Integrated Agrometeorological Prediction System. Atmosphere, 13(8), Article 1337.

Unkašević, M., & Tošić, I. (2009). Changes in extreme daily winter and summer temperatures in Belgrade. Theoretical and Applied Climatology, 95, 27–38.

World Meteorological Organization. (2009). Guidelines on Analysis of extremes in a changing climate in support of informed decisions for adaptation (WMO-TD. 1500).

Zhang, R., Sun, C., Zhu, J., Zhang, R. H., & Li, W. (2020). Increased European heat waves in recent decades in response to shrinking Arctic sea ice and Eurasian snow cover. NPJ Climate and Atmospheric Science, 3(1), Article 7.




How to Cite

Milovanović, B., Takara, K., Radovanović, M., Milivojević, M., & Jovanović, J. M. (2023). FREQUENCY ANALYSIS OF ABSOLUTE MAXIMUM AIR TEMPERATURES IN SERBIA . Journal of the Geographical Institute “Jovan Cvijić” SASA, 73(3), 279–293.

Most read articles by the same author(s)