FREQUENCY ANALYSIS OF ABSOLUTE MAXIMUM AIR TEMPERATURES IN SERBIA
DOI:
https://doi.org/10.2298/IJGI2303279MKeywords:
absolute maximum air temperatures, frequency analysis, annual maximum series, SerbiaAbstract
This paper describes the frequency analysis of absolute maximum air temperatures, using annual maximum series (AMS) in the period 1961–2010 from 40 climatological stations in Serbia with maximum likelihood estimation of distribution parameters. For the goodness of fit testing of General Extreme Value (GEV), Normal, Log-Normal, Pearson 3 (three parameters), and Log-Pearson 3 distribution, three different tests were used (Kolmogorov-Smirnov, Anderson-Darling, chi-square). Based on the results of these tests (best average rank of certain distribution), the appropriate distribution is selected. GEV distribution proved to be the most appropriate one in most cases. The probability of exceedance of absolute maximum air temperatures on 1%, 0.5%, 0.2%, and 0.1% levels are calculated. A spatial analysis of the observed and modeled values of absolute maximum air temperatures in Serbia is given. The absolute maximum air temperature of 44.9 °C was recorded at Smederevska Palanka station, and the lowest value of maximum air temperature 35.8 °C was recorded at Zlatibor station, one of the stations with the highest altitude. The modeled absolute maximum air temperatures are the highest at Zaječar station with 44.5 °C, 45.6 °C, 47.0 °C, and 48.0 °C and the lowest values are calculated for Sjenica station with 35.5 °C, 35.8 °C, 36.1 °C, and 36.2 °C for the return periods of 100, 200, 500, and 1000 years, respectively. Our findings indicate the possible occurrence of much higher absolute maximum air temperatures in the future than the ones recorded on almost all of the analyzed stations.
Article metrics
References
Alexandrov, V. (2005). Variability of Maximum and Minimum Air Temperature in Bulgaria. Geophysical Research Abstracts, 7, Article 01461, https://meetings.copernicus.org/www.cosis.net/abstracts/EGU05/01461/EGU05-J-01461.pdf
Anderson, T. W., & Darling, D. A. (1954). A Test of Goodness of Fit. Journal of American Statistical Association, 49(268), 765–769. https://www.jstor.org/stable/2281537
Andjelković, G. (2005). Beogradsko urbano ostrvo toplote [Belgrade heat island]. Geografski fakultet Univerziteta u Beogradu.
Andjelković, G. (2007). Temperature conditions on July 2007 as extreme climatic phenomenon in Serbia. Glasnik Srpskog geografskog društva, 87(2), 51–62. https://gery.gef.bg.ac.rs/handle/123456789/200
Arsenović, D., Lužanin, Z., Milošević, D., Dunjić, J., Nikitović, V., & Savić, S. (2023). The effects of summer ambient temperature on total mortality in Serbia. International Journal of Biometeorology, 67(10),1581–1589. https://doi.org/10.1007/s00484-023-02520-5
Arsenović, D., Savić, S., Lužanin, Z., Radić, I., Milošević, D., & Arsić, M. (2019). Heat-related Mortality as an Indicator of Population Vulnerability in a Mid-sized Central European City (Novi Sad, Serbia, Summer 2015). Geographica Pannonica, 23, 204–215. https://doi.org/10.5937/gp23-22680
Auld, G., Hegerl, G., & Papastathopoulos, I. (2021). Changes in the distribution of observed annual maximum temperatures in Europe (arXiv:2112.15117). arXiv. https://doi.org/10.48550/arXiv.2112.15117
Basu, R. (2009). High ambient temperature and mortality: a review of epidemiologic studies from 2001 to 2008. Environmental Health, 8, Article 40. https://doi.org/10.1186/1476-069X-8-40
Branković, Č., Cindrić, K., Gajić-Čapka, M., Pandžić, K., Patarčić, M., Srnec, L., Tomašević, I., Vučetić, V., & Zaninović, K. G. (2013). Sixth National Communication Report of the Republic of Croatia under the United Nations Framework Convention on the Climate Change (UNFCCC). Selected Sections in Chapters: 7-Climate Change Impacts and Adaptation Measures, Research, Systematic Observation and Monitoring. Croatian Meteorological and Hydrological Service. https://dokumen.tips/documents/-nacionalno-izvjee-republike-hrvatske-prema-okvirnoj-klimahrraznopublikacijenikp6dhmzpdf.html?page=4
Brás, T. A., Seixas, J., Carvalhais, N., & Jägermeyr, J. (2021). Severity of drought and heatwave crop losses tripled over the last five decades in Europe. Environmental Research Letters, 16(6), Article 065012 https://doi.org/10.1088/1748-9326/abf004
Burić, D., Luković, J., Ducić, V., Dragojlović, J., & Doderović, M. (2014). Recent trends in daily temperature extremes over southern Montenegro (1951–2010). Natural Hazards and Earth System Sciences, 14(1), 67–72. https://doi.org/10.5194/nhess-14-67-2014
Chervenkov, H., & Malcheva, K. (2023). Extreme Heat Events over Southeast Europe Based on NEX-GDDP Ensemble: Present Climate Evaluation and Future Projections. Atmosphere, 14(6), Article 1000. https://doi.org/10.3390/atmos14061000
Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer.
Croitoru, A. E., & Piticar, A. (2013). Changes in daily extreme temperatures in the extra-Carpathians regions of Romania. International Journal of Climatology, 33(8), 1987–2001. https://doi.org/10.1002/joc.3567
Dankers, R., & Hiederer, R. (2008). Extreme Temperatures and Precipitation in Europe: Analysis of a High-Resolution Climate Change Scenario. Europian Commission; Joint Research Centre; Institute for Environment and Sustainability.
dos Reis, C. J., Souya, A., Graf, R., Kossowski, M. T., Abreu, M. C., de Oliveira-Junior, J. C., & Fernandes, W. A. (2022). Modeling of the air temperature using the Extreme Value Theory for selected biomes in Mato Grosso do Sul (Brazil). Stochastic Environmental Research and Risk Assessment, 36(10), 3499–3516. https://doi.org/10.1007/s00477-022-02206-1
Drljača, V., Tošić, I., & Unkašević, M. (2009). Analiza toplotnih talasa pomoću klimatsкog indeкsa u Beogradu i Nišu [An analysis of heat waves in Belgrade and Niš using the climate index]. Journal of the Geographical Institute “Jovan Cvijić“ SASA, 59(1), 49–62. https://doi.org/10.2298/IJGI0959049D
European Environmental Agency. (2017). Climate change, impacts and vulnerability in Europe 2016: an indicator-based report (EEA Report No. 1/2017). European Environmental Agency. https://www.eea.europa.eu/publications/climate-change-impacts-and-vulnerability-2016
Gençay, R., & Selçuk, F. (2004). Extreme value theory and Value-at-Risk: Relative performance in emerging markets. International Journal of Forecasting, 20(2), 287–303. https://doi.org/10.1016/j.ijforecast.2003.09.005
Goubanova, K., & Li, L. (2007). Extremes in temperature and precipitation around the Mediterranean basin in an ensemble of future climate scenario simulations. Global and Planetary Change, 57(1–2), 27–42. https://doi.org/10.1016/j.gloplacha.2006.11.012
Gumbel, E. (1958). Statistics of extremes. Columbia University Press.
Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes. Effect on plant growth and development. Weather and Climate Extremes, 10, 4–10. https://doi.org/10.1016/j.wace.2015.08.001
Hyndman, R. J., & Fan, S. (2010). Density Forecasting for Long-Term Peak Electricity Demand. IEEE Transactions on Power Systems, 25(2), 1142–1153. http://dx.doi.org/10.1109/TPWRS.2009.2036017
Intergovernmental Panel on Climate Changes. (2012). Managing risks of extreme events and disasters to advance climate change adaptation. A special report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://www.ipcc.ch/site/assets/uploads/2018/03/SREX_Full_Report-1.pdf
Klein Tank, A. M. G., Zwiers, F., & Zhang, X. (2009). Guidelines on Analysis of Extremes in a Changing Climate in Support of Informed Decision for Adaptation. WMO. https://www.ecad.eu/documents/WCDMP_72_TD_1500_en_1.pdf
Kottegoda, N. T., & Rosso, R. (2008). Applied statistics for civil and environmental engineers. Blackwell Pub.
Kuglitsch, F. G., Toreti, A., Xoplaki, E., Della-Marta, P. M., Zerefos, C. S., Türkeş, M., & Luterbacher, J. (2010). Heat wave changes in the eastern Mediterranean since 1960. Geophysical Research Letters, 37(4), Article L04802. https://doi.org/10.1029/2009GL041841
Kyselý, J. (2002). Probability Estimates of Extreme Temperature Events: Stochastic Modelling Approach vs. Extreme Value Distributions. Studia Geophysica and Geodaetica, 46, 93–112. https://doi.org/10.1023/A:1019841717369
Law, A. M., & Kelton, W. D. (1991). Simulation modeling and analysis. Mc. Graw-Hill Inc.
Lazoglou, G., Anagnostopoulou, C., Tolika, K., & Kolyva-Machera, F. (2019). A review of statistical methods to analyze extreme precipitation and temperature events in the Mediterranean region. Theoretical and Applied Climatology, 136, 99–117. https://link.springer.com/article/10.1007/s00704-018-2467-8
Lilliefors, H. W. (1967). On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown. Journal of the American Statistical Association, 62(318), 399–402. https://www.jstor.org/stable/2283970
Mathison, S. (1988). Why triangulate? Educational Researcher, 17(2), 13–17. https://doi.org/10.3102/0013189X017002013
MathWave Technologies. (2022). EasyFit (5.0 trial version) [Computer software]. https://easyfit.updatestar.com/
Meehl, G. A., & Tebaldi, C. (2004). More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century. Science, 305(5686), 994–997. https://doi.org/10.1126/science.1098704
Milovanović, B., Schuster, P., Radovanović, M., Ristić Vakanjac, V., & Schneider, C. (2017). Spatial and temporal variability of precipitation in Serbia for the period 1961–2010. Theoretical and Applied Climatology, 130(1), 687–700. https://doi.org/10.1007/s00704-017-2118-5
Milovanović, B., Ducić, V., Radovanović, M., & Milivojević, M. (2017). Climate Regionalization of Serbia According to Köppen Climate Classification. Journal of the Geographical Institute “Jovan Cvijić” SASA, 67(2), 103–114. https://doi.org/10.2298/IJGI1702103M
Milovanović, B., Radovanović, M., Stanojević, G., Pecelj, M., & Nikolić, J. (2017). Klima Srbije [Climate of Serbia]. In M. Radovanović (Ed.), Geografija Srbije (Posebna izdanja, Knjiga 91) [Geography of Serbia (Special issues, Book 91)] (pp. 94–156). Geografski institut „Jovan Cvijić“ SANU.
Nakai, S., Itoh, T., & Morimoto, T. (1999). Deaths from heat stroke in Japan: 1968–1994. International Journal of Biometeorology, 43, 124–127. https://doi.org/10.1007/s004840050127
Plavšić, J. (2006). Neizvesnost u analizi velikih voda metodom parcijalnih serija [Uncertainties in flood frequency estimation by partial duration series]. Vodoprivreda, 38, 41–50. https://www.vodoprivreda.net/wp-content/uploads/2014/08/neisvesnost.pdf
Popov, T., Gnjato, S., Trbić, G., & Ivanišević, M. (2018). Recent trends in extreme temperature indices in Bosnia and Herzegovina. Carpathian Journal of Earth and Environmental Sciences, 13(1), 211–224. https://doi.org/10.26471/cjees/2018/013/019
Reiss, R.-D., & Thomas, M. (2007). Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields (3rd ed.) Birkhäuser.
Republic Hydrometeorological Service of Serbia (2022). Meteorološki godišnjak - klimatološki podaci [Meteorological yearbook - climatological data] https://www.hidmet.gov.rs/ciril/meteorologija/klimatologija_godisnjaci.php
Ruml, M., Gregorić, E., Vujadinović, M., Radovanović, S., Matović, G., Vuković, A., Počuča, V., & Stojičić, D. (2017). Observed changes of temperature in Serbia over the period 1961 − 2010. Atmospheric Research, 183, 26–41. https://doi.org/10.1016/j.atmosres.2016.08.013
Russo, S., Sillmann, J., & Fischer, E. (2015). Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environmental Research Letters, 10(12), Article 124003. https://doi.org/10.1088/1748-9326/10/12/124003
Rypkema, D., & Tuljapurkar, S. (2021). Chapter 2 – Modeling extreme climatic events using the generalized extreme value (GEV) distribution. In A. S. R. S. Rao & C. R. Rao (Eds.), Data Science: Theory and Applications (Vol. 44, pp. 39–71). Elsevier. https://doi.org/10.1016/bs.host.2020.12.002
Shin, H., Jung, Y., Jeong, C., & Heo, J. H. (2012). Assessment of modified Anderson-Darling test statistics for the generalized extreme value and generalized logistic distributions. Stochastic Environmental Research and Risk Assessment, 26, 105–114. https://doi.org/10.1007/s00477-011-0463-y
Stanojević, G., Spalević, A. B., Kokotović, V., & Stojilković, J. N. (2014). Does Belgrade (Serbia) need heat health warning system? Disaster Prevention and Management, 23(5), 494–507. https://doi.org/10.1108/DPM-11-2013-0200
Takara, K., & Stedinger, J. (1994). Recent Japanese contribution to frequency analysis and quantile lower bound estimator. In K. W. Hipel (Ed.), Stochastic and Statistical Methods in Hydrology and Environmental Engineering: Vol 1. Extreme Values: Floods and Droughts (pp. 217–234). Kluwer.
Takara, K., & Takasao, T. (1988). Criteria for Evaluating Probability Distribution Models in Hydrologic Frequency Analysis. Doboku Gakkai Ronbunshu, 1988(393), 151–160. https://doi.org/10.2208/jscej.1988.393_151
Tanaka, S. (2020). Comparison of AMS and POT Analysis with Long Historical Precipitation and Future Change Analysis Using „d4PDF“. In N. Hoshino, M. Shuhei, & T. Shimura (Eds.), Pioneering works on Extreme Value Theory. In Honor of Masaaki Sibuva (pp. 93–112). Springer.
Vuković Vimić, A., Djurdjević, V., Ranković-Vasić, Z., Nikolić, D., Ćosić, M., Lipovac, A., Cvetković, B., Sotonica, D., Vojvodić, D., & Vujadinović Mandić, M. (2022). Enhancing Capacity for Short-Term Climate Change Adaptations in Agriculture in Serbia: Development of Integrated Agrometeorological Prediction System. Atmosphere, 13(8), Article 1337. https://doi.org/10.3390/atmos13081337
Unkašević, M., & Tošić, I. (2009). Changes in extreme daily winter and summer temperatures in Belgrade. Theoretical and Applied Climatology, 95, 27–38. https://doi.org/10.1007/s00704-007-0364-7
World Meteorological Organization. (2009). Guidelines on Analysis of extremes in a changing climate in support of informed decisions for adaptation (WMO-TD. 1500). https://www.ecad.eu/documents/WCDMP_72_TD_1500_en_1.pdf
Zhang, R., Sun, C., Zhu, J., Zhang, R. H., & Li, W. (2020). Increased European heat waves in recent decades in response to shrinking Arctic sea ice and Eurasian snow cover. NPJ Climate and Atmospheric Science, 3(1), Article 7. https://doi.org/10.1038/s41612-2020-0110-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of the Geographical Institute “Jovan Cvijić” SASA
This work is licensed under a Creative Commons Attribution 4.0 International License.