SPATIAL-TEMPORAL VARIABILITY OF AIR TEMPERATURES IN SERBIA IN THE PERIOD 1961–2010
DOI:
https://doi.org/10.2298/IJGI1802157MKeywords:
air temperature, trend, Sen’s slope estimation, Mann-Kendall test, SerbiaAbstract
The aim of this paper is to examine the spatial and temporal variability of the average monthly, seasonal and annual air temperatures in Serbia. Therefore, data from 64 climatologic stations were analyzed in the period from 1961 to 2010. Based on the data, on the position of the stations (their latitude, longitude, altitude), and the characteristics of the terrain in their vicinity (inclination and terrain exposure in a radius of 10 km around the station), a regression model was constructed based on which air temperatures are interpolated for the territory of Serbia. The rootmean-square error (RMSE) of the regression model ranged from 0.2 ºC in January, February and November to 1.1 ºC in August. Spatial distribution of air temperatures is shown (maps of mean monthly, mean seasonal and mean annual air temperatures are made), and the Sen's procedure was used to calculate trends of air temperatures (maps of average monthly, mean seasonal and mean annual trends of air temperatures). The Mann-Kendall test was used to test the significance of air temperature trends. Apart from the southeast, the whole territory of Serbia has practically experienced a statistically significant rise in the average annual air temperature, with the highest increase in the summer and winter months.
Article metrics
References
Andjelković, G. (2005). Belgrade as urban heat island (Beogradsko urbano ostrvo toplote). Belgrade, Serbia: Geografski fakultet Univerziteta u Beogradu.
Bajat, B., Pejović, M., Luković, J., Manojlović, P., Ducić, V., & Mustafić, S. (2013). Mapping average annual precipitation in Serbia (1961–1990) by using regression kriging. Theorеtical and Applied Climatology, 112(1–2), 1–13. doi: https://doi.org/10.1007/s00704-012-0702-2
Bajat, B., Blagojević, D., Kilibarda, M., Luković, J., & Tošić, I. (2015). Spatial analysis of the temperature trends in Serbia during the period 1961–2010. Theorеtical and Applied Climatology, 121(1–2), 289–301. doi: https://10.1007/s00704-014-1243-7
Burić, D., Ducić, V., & Luković, J. (2011). Climate fluctuation in Montenegro in the second half of XX century and the beginning of XXI century (Kolebanje klime u Crnoj Gori u drugoj polovini XX i početkom XXI vijeka). Posebna izdanja knj. 86, Odeljenje prirodnih nauka knj. 36. Podgorica, Montenegro: Crnogorska akademija nauka i umjetnosti.
Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? — Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7, 1247–1250, doi: https://doi.org/10.5194/gmd-7-1247-2014
Di Piazza, A., Lo Conti, F., Viola, F., Eccel, E., & Noto, L. V. (2015). Comparative Analysis of Spatial Interpolation Methods in the Mediterranean Area: Application to Temperature in Sicily. Water, 7(5), 1866–1888; doi: https://10.3390/w7051866
Ducić, V., & Anđelković, G. (2004). Climatology – praktikum for geographers (Klimatologija. Praktikum za geografe). Belgrade, Serbia: Geografski fakultet Univerziteta u Beogradu. (in Serbian)
Ducić, V., & Radovanović, M. (2005). Climate of Serbia (Klima Srbije). Belgrade, Serbia: Zavod za udžbenike i nastavna sredstva.
EEA (European Environmental Agency), Report No 1. (2017). Climate change, impacts and vulnerability in Europe 2016 An indicator-based report. Retrieved from http://www.eea.europa.eu/publications/climate-change-impacts-and-vulnerability-2016 (Accessed on February 4, 2017)
ESRI (2011). ArcGIS Desktop [computer software]: Release 10. Redlands, CA: Environmental Systems Research Institute. ArcGIS® and ArcMap™ are the intellectual property of Esri and are used herein under license.
https://www.geographie.hu-berlin.de/en/professorships/climate_geography/ climate _serbia/
Klapwijk, М. Ј., Csoka, G., Hirka, A., & Bjorkman, C. (2013). Forest insects and climate change: long-term trends in herbivore damage. Ecology and Evolution 3(12), 4183–4196. doi: https://10.1002/ece3.717
Kotteki, M., Grieser, J., Beck, C., Rudolf, B., & Rubel F. (2006). World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263. doi: https://10.1127/0941-2948/2006/0130
Li, J, & Heap A. D. (2011). A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecological Informatics, 6, 228–241. doi: https://doi.org/10.1016/j.ecoinf.2010.12.003
Luo, W., Taylor, M. C. & Parker, S. R. (2008). A comparison of spatial interpolation methods to estimate continuous wind speed surfaces using irregularly distributed data from England and Wales. International Journal of Climatology, 28, 947–959. doi: https://10.1002/joc.1583
Marin, L., Birsan, M. V., Bojariu, R., Dumitrescu, A., Micu, D. M., & Manea, A. (2014). An Overview of Annual Climatic changes in Romania: Trends in Air Temperature, Precipitation, Sunshine Hours, Cloud cover, Relative humidity and Wind speed during the 1961–2013 period. Carpathian Journal of Earth and Environmental Sciences, 9(4), 253–258. Retrieved from http://www.ubm.ro/sites/CJEES/viewTopic.php?topicId=489
Milovanović, B., Ducić, V., Radovanović, M., & Milivojević, M. (2017a). Climate regionalization of Serbia according to Koppen climate classification. Journal of the Geographical Institute “Jovan Cvijić” SASA, 67(2), 103–114. doi: http://dx.doi.org/10.2298/IJGI1702103M
Milovanović, B., Radovanović, M., Stanojević, G., Pecelj, M., & Nikolić, J. (2017b). Climate of Serbia (Klima Srbije). In M. Radovanović (Ed.), Geografija Srbije. (pp. 94–159). Belgrade, Serbia: Geografski institut „Jovan Cvijić“ SANU.
Milovanović, B., Schuster, P., Radovanović, M., Ristić Vakanjac, V., & Schneider, C. (2017). Spatial and Temporal Variability of Precipitation in Serbia for the period 1961-2010. Theoretical and Applied Climatology, 130(1–2), 687–700. doi: https://10.1007/s00704-017-2118-5
R Development Core Team (2008) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.Rproject.org
Rabi, A., Hadzima-Nyarko, M., & Šperac M. (2015). Modelling river temperature from air temperature: case of the River Drava (Croatia). Hydrological Sciences Journal, 60(9), 1490–1507. doi: https://10.1080/02626667.2014.914215
QGIS Development Team (2015). QGIS geographic information system [computer software]. Open Source Geospatial Foundation Project. Retrieved from http://www.qgis.org/
Salmi, T., Määttä, A., Anttila, P., Airola, T., & Amnell, T. (2002). Detecting trends of annual values of atmospheric pollutants by the Mann-Kendall test and Sen’s slope estimates-the excel template application make sense. Finish Meteorological Institute, Helsinki, Finland. Retrieved from http://www.ilmanlaatu.fi/ilmansaasteet/julkaisu/pdf/MAKESENS-Manual_2002.pdf (Accessed on May 3, 2016)
Sutapa, W., & Galib, I. (2016). Application of non-parametric test to detect trend rainfall in Palu Watershed, Central Sulawesi, Indonesia. International Journal of Hydrology Science and Technology, 6(3), 238–253. doi: https://10.1504/IJHST.2016.077399
Trbić, G., Popov, T., & Gnjato, S. (2017). Analysis of air temperature trends in Bosnia and Herzegovina. Geographica Pannonica, 21(2), 68–84. doi: https://10.18421/GP21.02-01
Willmott C. J., & Matsuura K. (2005). Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in Assessing Average Model Performance. Climate Research, 30(1), 79–82. doi: https://10.3354/cr030079
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Journal of the Geographical Institute “Jovan Cvijić” SASA
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.