• Igor Leščešen University of Novi Sad, Climatological and Hydrological Research Center, Novi Sad
  • Dragan Dolinaj University of Novi Sad, Climatological and Hydrological Research Center, Novi Sad
  • Milana Pantelić University of Novi Sad, Climatological and Hydrological Research Center, Novi Sad
  • Tamás Telbisz Eötvös Loránd University, Institute of Geography and Earth Sciences, Department of Physical Geography, Budapest
  • György Varga Eötvös Loránd University, Institute of Geography and Earth Sciences, Department of Physical Geography, Budapest




drought, Streamflow Drought Index, Tisza River, Serbia, Hungary


Drought is a natural phenomenon that occurs when the availability of water is significantly below the normal levels during a shorter or longer period of time and cannot meet the necessary demand. This study focused on hydrological drought assessment of the Tisza River on four gauging stations: Vásárosnamény, Szolnok, Szeged, and Senta for the period 1964–2018. An effective Streamflow Drought Index (SDI) has been recently proposed and widely used for determining hydrological droughts. Both long- and short-term droughts have very severe impacts on the investigated locations. Two drought periods can be singled out: the first period was from 1983 to 1993, with the exceptions in 1985 and 1987. This period is characterized by higher absolute SDI values on Vásárosnamény (–0.84) and Szolnok (–0.87) than on Szeged (–0.29) and Senta (–0.40) stations. The second period was more severe and lasted from 2011 to 2015, with an average SDI value of –1.32 on Vásárosnamény, –1.08 on Szolnok, –0.53 on Szeged, and –0.57 on Senta station. The Mann-Kendall test results indicate that there is no trend indicating transition from humid towards more arid condition over the investigated period.

Article metrics


Al-Faraj, F. A. M., Scholz, M., & Tigkas, D. (2014). Sensitivity of Surface Runoff to Drought and Climate Change: Application for Shared River Basins. Water, 6(10), 3033–3048. https://doi.org/10.3390/w6103033

Alfieri, L., Burek, P., Feyen, L., & Forzieri, G. (2015). Global warming increases the frequency of river floods in Europe. Hydrology and Earth System Sciences, 19, 2247–2260. https://doi.org/10.5194/hess-19-2247-2015

Bąk, B., & Kubiak-Wójcicka, K. (2017). Impact of meteorological drought on hydrological drought in Torún (central Poland) in the period of 1971–2015. Journal of Water and Land Development, 32(1), 3–12. https://doi.org/10.1515/jwld-2017-0001

Bakonyi, P. (2010). Flood and Drought Strategy of the Tisza River Basin. Budapest, Hungary: VITUKI.

Barker, L. J., Hannaford, J., Chiverton, A., & Svensson, C. (2016). From meteorological to hydrological drought using standardised indicators. Hydrology and Earth System Sciences, 20, 2483–2505. https://doi.org/10.5194/hess-20-2483-2016

Beran, M. A., & Rodier, J. A. (1985). Hydrological aspects of drought. Paris, France: United Nations Educational, Scientific and Cultural Organization.

Bussay, A., & Szinell, C. (1996). Drought Continues in Hungary in 1995. Drought Network News (1994-2001), 11. Retrieved from https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1010&context=droughtnetnews

Forzieri, G., Feyen, L., Rojas, R., Flörke, M., Wimmer, F., & Bianchi, A. (2014). Ensemble projections of future streamflow droughts in Europe. Hydrology and Earth System Sciences, 18, 85–108. https://doi.org/10.5194/hess-18-85-2014

Gavrilov, M. B., Marković, S. B., Jarad, A., & Korać, V. M. (2015). The Analysis of temperature trends in Vojvodina (Serbia) from 1949 to 2006. Thermal Science, 19(2), 339–350. https://doi.org/10.2298/TSCI150207062G

Gavrilović, Lj., & Dukić, D. (2002). Reke Srbije [Rivers of Serbia]. Belgrade, Serbia: Zavod za udžbenike.

General Directorate of Water Management. (2018). Nemzeti öntözési igény felmérés adatbázisa [Database of the national water demand survey]. Retrieved from http://www.vizugy.hu/

Gilbert, R. O. (1987). Statistical Methods for Environmental Pollution Monitoring. New York, NY: John Wiley & Sons.

Guttman, N. B. (1994). On the Sensitivity of Sample L Moments to Sample Size. Journal of Climate, 7(6), 1026–1029. https://doi.org/10.1175/1520-0442(1994)007<1026:OTSOSL>2.0.CO;2

International Commission for Protection of the Danube River. (2009). Sub-Basin Level Flood Action Plan Tisza River Basin. Vienna, Austria: ICPDR.

International Commission for Protection of the Danube River. (2011). Integrated Tisza River Basin Management Plan. Vienna, Austria: ICPDR.

Kendall, M. G. (1975). Rank Correlation Methods (4th ed.). London, UK: Charles Griffin.

Kubiak-Wójcicka, K., & Bąk, B. (2018). Monitoring of meteorological and hydrological droughts in the Vistula basin (Poland). Environmental Monitoring and Assessment, 190, 691. https://doi.org/10.1007/s10661-018-7058-8

Leščešen, I., Pantelić, M., Dolinaj, D., & Lukić, T. (2014). Assessment of water quality of the Tisa river (Vojvodina, North Serbia) for ten year period using Serbian Water Quality Index (SWQI). Geographica Pannonica, 18(4), 102–107. https://doi.org/10.5937/GeoPan1404102L

Li, S., Xiong, L., Dong, L., & Zhang, J. (2013). Effects of the Three Gorges Reservoir on the hydrological droughts at the downstream Yichang station during 2003–2011. Hydrological Processes, 27(26), 3981–3993. https://doi.org/10.1002/hyp.9541

Ljubenkov, I., & Kalin, K. C. (2016). Evaluation of drought using standardised precipitation and flow indices and their correlations on an example of Sinjsko polje. Građevinar, 68(2), 135–143. https://doi.org/10.14256/JCE.1337.2015

McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scale. In Proceedings of the 8th Conference on Applied Climatology (Vol. 17, pp. 179–183). Boston, MA: American Meteorological Society.

Mezősi, G. (2017). The Physical Geography of Hungary. Cham, Switzerland: Springer.

Milošević, D. D., Savić, S. M., Pantelić, M., Stankov, U., Žiberna, I., Dolinaj, D., & Leščešen, I. (2016). Variability of seasonal and annual precipitation in Slovenia and its correlation with large-scale atmospheric circulation. Open Geosciences, 8(1), 593–605. https://doi.org/10.1515/geo-2016-0041

Nalbantis, Ι. (2008). Drought and Streamflow. European Water, 23(24), 65–76. Retrieved from https://www.ewra.net/ew/pdf/EW_2008_23-24_06.pdf

Nalbantis, I., & Tsakiris, G. (2009). Assessment of hydrological drought revisited. Water Resources Management, 23(5), 881–897. https://doi.org/10.1007/s11269-008-9305-1

Ozkaya, A., & Zerberg, Y. (2019). A 40-Year Analysis of the Hydrological Drought Index for the Tigris Basin, Turkey. Water, 11(4), 657. https://doi.org/10.3390/w11040657

Pavić, D., Dolinaj, D., & Dragićević, S. (2009) Termički režim vode i režim leda na reci Tisi u Srbiji [Thermal regime of water and ice on Tisza River in Serbia]. Zbornik radova - Geografski fakultet Univerziteta u Beogradu, 57, 35–46. Retrieved from https://scindeks-clanci.ceon.rs/data/pdf/1450-7552/2009/1450-75520957035P.pdf

Republic Hydrometeorological Service of Serbia. (1964–2018). Annual Report – Hydrological yearbook [Database]. Belgrade, Serbia: Republic Hydrometeorologcal Service of Serbia.

Rimkus, E., Stonevičius, E., Korneev, V., Kažys, J., Valiuškevičius, G., & Pakhomau, A. (2013). Dynamics of meteorological and hydrological droughts in the Neman river basin. Environmental Research Letters, 8(4), 045014. https://doi.org/10.1088/1748-9326/8/4/045014

Rojas, R., Feyen, L., Bianchi, A., & Dosio, A. (2012). Assessment of future flood hazard in Europe using a large ensemble of bias-corrected regional climate simulations. Journal of Geophysical Research, 117(D117), 1–22. https://doi.org/10.1029/2012JD017461

Soleimani Sardou, F. & Bahrenabd, A. (2014). Hydrological Drought Analysis Using SDI Index in Halilrud Basin of Iran. Environmental Resources Research, 2(1), 47–56. https://doi.org/10.22069/ijerr.2014.1678

Štrbac, S. (2014). Sadržaj i mobilnost teških metala i organskih jedinjenja u ekosistemu reke Tise [Content and mobility of heavy metals and organic compounds in the ecosystem of the Tisza River] (Doctoral dissertation). Retrieved from http://nardus.mpn.gov.rs/bitstream/handle/123456789/2705/Disertacija.pdf?sequence=4&isAllowed=y

Tabari, H., Nikbakht, J., & Hosseinzadeh Talaee, P. (2013). Hydrological Drought Assessment in Northwestern Iran Based on Streamflow Drought Index (SDI). Water Resources Management, 27, 137–151. https://doi.org/10.1007/s11269-012-0173-3

Tigkas D., Vangelis, H., & Tsakiris, G. (2015). DrinC: A software for drought analysis based on drought indices. Earth Science Informatics, 8(3), 697–709. https://doi.org/10.1007/s12145-014-0178-y

Tigkas, D., Vangelis, H., & Tsakiris, G. (2012). Drought and climatic change impact on streamflow in small watersheds. Science of the Total Environment, 440, 33–41. https://doi.org/10.1016/j.scitotenv.2012.08.035

United Nations Environment Programme. (2004). Rapid environmental assessment of the Tisza River basin. Geneva, Switzerland: UNEP/Regional Office for Europe.

Vizi, D. B., Fehér, J., Lovas, A., & Kovács, S. (2018). Modelling of extreme hydrological events on a Tisza river basin pilot area, Hungary. Journal of Environmental Geography, 11(3–4), 57–66. https://doi.org/10.2478/jengeo-2018-0013

Wable, P. S., Jha, M. K., & Shekhar, A. (2019). Comparison of Drought Indices in a Semi-Arid River Basin of India. Water Resources Management, 33, 75–102. https://doi.org/10.1007/s11269-018-2089-z

Yang, W. (2010). Drought Analysis under Climate Change by Application of Drought Indices and Copulas (Doctoral dissertation). Retrieved from https://pdxscholar.library.pdx.edu/cgi/viewcontent.cgi?article=1715&context=open_access_etds

Yue, S., & Wang, C. (2004). The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially Correlated Hydrological Series. Water Resources Management, 18, 201–218. https://doi.org/10.1023/B:WARM.0000043140.61082.60




How to Cite

Leščešen, I., Dolinaj, D., Pantelić, M., Telbisz, T., & Varga, G. (2020). HYDROLOGICAL DROUGHT ASSESSMENT OF THE TISZA RIVER. Journal of the Geographical Institute “Jovan Cvijić” SASA, 70(2), 89–100. https://doi.org/10.2298/IJGI2002089L