DROUGHT ASSESSMENT IN VOJVODINA (SERBIA) USING K-MEANS CLUSTER ANALYSIS

Authors

  • Igor Leščešen University of Novi Sad, Climatological and Hydrological Research Center, Novi Sad
  • Dragan Dolinaj University of Novi Sad, Climatological and Hydrological Research Center, Novi Sad
  • Milana Pantelić University of Novi Sad, Climatological and Hydrological Research Center, Novi Sad
  • Srđan Popov University of Novi Sad, Faculty of Technical Sciences, Chair of Applied Computer Science, Novi Sad

DOI:

https://doi.org/10.2298/IJGI1901017L

Keywords:

SPI, droughts, k-means, regionalization, Vojvodina

Abstract

Droughts are natural hazards that endanger the safety of population, their property and can create serious agricultural and ecological problems over the affected region. An analysis of the Standardized Precipitation Index (SPI) was performed by using the database of sixty years (1956–2016) of the monthly precipitation for the nine meteorological stations in Vojvodina region (Serbia). The SPI has been used for drought determination. The present study investigates the application of k-means clustering methods on the SPI at the 12-month timescale values to detect distinct drought clusters. For the purpose of determining the optimal number of clusters, the Gap Statistics was used. The results show that the total of four clusters (regions) can be identified in Vojvodina: three stations are listed in region 1 (Sombor, Palić, and Novi Sad), two stations in region 2 (Bač and Sremska Mitrovica), region 3 is a single-station region (Bela Crkva), while in region 4, three stations are grouped (Kikinda, Zrenjanin, and Vršac). The Mann-Kendall test has shown that only in region 1 there is a trend in SPI values ranging from arid towards more humid conditions in the 1956–2016 period. In other regions no trend was observed in the data series. These results could contribute to water resources and agricultural planning and management in Vojvodina region and also confirm the usefulness of clustering methods for drought regionalization.

Article metrics

References

Apaydin, H., Erpul, G., Bayramin, I., & Gabriels, D. (2006). Evaluation of indices for characterizing the distribution and concentration of precipitation: A case for the region of Southeastern Anatolia Project, Turkey. Journal of Hydrology, 328(3–4), 726–732. https://doi.org/10.1016/j.jhydrol.2006.01.019

Asadi, P., Engelke, S., & Davison, A. C. (2018). Optimal regionalization of extreme value distributions for flood estimation. Journal of Hydrology, 556, 182–193. https://doi.org/10.1016/j.jhydrol.2017.10.051

Hassan, B. G. H., & Ping, F. (2012). Formation of Homogenous Regions for Luanhe Basin – by Using L-Moments and Cluster Techniques. International Journal of Environmental Science and Development, 3(2), 205–210. https://doi.org/10.7763/IJESD.2012.V3.216

Bennett, D. A. (2001). How can I deal with missing data in my study? Australian and New Zealand Journal of Public Health, 225(5), 464–469. https://doi.org/10.1111/j.1467-842X.2001.tb00294.x

Carvalho, M. J., Melo-Gonçalves, P., Teixeira, J. C., & Rocha, A. (2016). Regionalization of Europe based on a K-Means Cluster Analysis of the climate change of temperatures and precipitation. Physics and Chemistry of the Earth, 94, 22–28. https://doi.org/10.1016/j.pce.2016.05.001

Clarke, R. T. (2011). Classification procedures in the context of PUB: ways forward? Hydrology and Earth System Science Discussions, 8, 855–867. https://doi.org/10.5194/hessd-8-855-2011

European Commission (2019). Standardized Precipitation Index (SPI) [Fact sheet]. Retrieved from http://edo.jrc.ec.europa.eu/documents/factsheets/factsheet_spi.pdf

Gilbert, R. O. (1987). Statistical Methods for Environmental Pollution Monitoring. New York, NY: Van Nostrand Reinhold Co.

Gregorič, G., & Ceglar, A. (2007). Monitoring suše - regionalni aspect [Drought monitoring - regional aspects]. Mišičev vodarski dan, 18, 124¬–127. Retrieved from http://www.mvd20.com/LETO2007/R18.pdf

Guenang, G. M., & Kamga, F. M. (2014). Computation of the Standardized Precipitation Index (SPI) and Its Use to Assess Drought Occurrences in Cameroon over Recent Decades. Journal of Applied Meteorology and Climatology, 53, 2310–2324. https://doi.org/10.1175/JAMC-D-14-0032.1

Guttman, N. B. (1999). Accepting the standardized precipitation index: a calculation algorithm. Journal of the American Water Resources Association, 35, 311–322. https://doi.org/10.1111/j.1752-1688.1999.tb03592.x

Hrnjak, I., Lukić, T., Gavrilov M. B., Marković, S. B., Unkašević, M., & Tošić, I. (2014). Aridity in Vojvodina. Serbia, Theoretical and Applied Climatology, 115(1–2), 323–332. http://dx.doi.org/10.1007/s00704-013-0893-1

Huntington, T. G. (2006). Evidence for intensification of the global water cycle: Review and synthesis. Journal of Hydrology, 319(3–4),83–95. https://doi.org/10.1016/j.jhydrol.2005.07.003

Intergovernmental Panel on Climate Change. (1996). Climate change 1995: The science of climate change. Cambridge, UK: Cambridge University Press.

Intergovernmental Panel on Climate Change. (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK; New York, NY: Cambridge University Press.

Javadi, S., Hashemy, S. M., Mohammadi, K., Howard, K. W. F., & Neshat, A. (2017). Classification of aquifer vulnerability using K-means cluster analysis. Journal of Hydrology, 549, 27–37. https://doi.org/10.1016/j.jhydrol.2017.03.060

Kazemzadeh, M., & Malekian, A. (2016). Spatial characteristics and temporal trends of meteorological and hydrological droughts in northwestern Iran. Natural Hazards, 80(1), 191–210. https://doi.org/10.1007/s11069-015-1964-7

Kendall, M. G. (1975). Rank correlation methods. Oxford, UK: Griffin

Longobardi, A., & Villani P. (2010). Trend analysis of annual and seasonal rainfall time series in the Mediterranean area. International Journal of Climatology, 30(10), 1538–1546. https://doi.org/10.1002/joc.2001

Lukić, T., Leščešen, I., Sakulsi, D., Basarin, B., & Jordaan, A. (2016). Rainfall erosivity as an indicator of sliding occurrence along the southern slopes of the Bačka loess plateau: A case study of Kula settlement, Vojvodina (North Serbia). Carpathian Journal of Earth and Environmental Sciences, 11(2), 303–318. Retrieved from http://www.ubm.ro/sites/CJEES/viewTopic.php?topicId=619

Malinović-Milićević, S., Mihailović, T. D., Radovanović, M. M., Drešković, N. (2018). Extreme precipitation indices in Vojvodina region (Serbia). Journal of Geographical Institute “Jovan Cvijić” SASA, 68(1), 1–15, https://doi.org/10.2298/IJGI1801001M

McKee, T. B., Doesken, N. J., & Kleist, J. (1993, January). The relationship of drought frequency and duration to time scales. In Proceedings of the Eighth Conference on Applied Climatology (pp. 179–183). Retrieved from http://www.droughtmanagement.info/literature/AMS_Relationship_Drought_Frequency_Duration_Time_Scales_1993.pdf

Patel, N. R., Chopra, P., & Dadhwal, V. K. (2007). Analyzing spatial patterns of meteorological drought using standardized precipitation index. Meteorological Applications, 14(4), 329–336. https://doi.org/10.1002/met.33

Paulo, A. A., & Pereira, L. S. (2006). Drought concepts and characterization. Comparing drought indices applied at local and regional scales. Water International, 31(1), 37–49. https://doi.org/10.1080/02508060608691913

Pham, D. T., Dimov, S. S., Nguyen, C. (2005). Selection of K in K-means clustering. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 219(1). 103–119. https://doi.org/10.1243/095440605X8298

Randall, D. A., Wood, R. A., Bony, S., Colman, R., Fichefet, T., Fyfe, J., . . . Taylor, K. E. (2007). Climate Models and Their Evaluation. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. Tignor, & H. L. Miller (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 589–662). Cambridge, UK; New York, NY: Cambridge University Press.

Ramachandra Rao, A., & Srinivas, V. V. (2006). Regionalization of watersheds by hybrid-cluster analysis. Journal of Hydrology, 318(1–4), 37–56. https://doi.org/10.1016/j.jhydrol.2005.06.003

Republic Hydrometeorological Service of Serbia (1956–2016). Meteorološki godišnjak - klimatološki podaci [Meteorological Yearbook - climatological data]. Retrieved from http://www.hidmet.gov.rs/latin/meteorologija/klimatologija_godisnjaci.php

Santos, J. F., Pulido-Calvo, I., & Portela, M. M. (2010). Spatial and temporal variability of droughts in Portugal. Water Resources Research, 46(3), W03503. https://doi.org/10.1029/2009WR008071

Šebenik, U., Brilly, M., & Šraj, M. (2017). Drought Analysis Using the Standardized Precipitation Index (SPI). Acta geographica Slovenica, 57(1), 31–49. http://dx.doi.org/10.3986/AGS.729

Sienz, F., Bothe, O., & Fraedrich, K. (2012). Monitoring and quantifying future climate projections of dryness and wetness extremes: SPI bias. Hydrology and Earth System Sciences, 16, 2143–2157. https://doi.org/10.5194/hess-16-2143-2012

Spinoni, J., Naumann, G., & Vogt, V. J. (2017). Pan-European seasonal trends and recent changes of drought frequency and severity. Global and Planetary Change, 148, 113–130. https://doi.org/10.1016/j.gloplacha.2016.11.013

Tošić, I., Hrnjak, I., Gavrilov, M. B., Unkašević, M., Marković, S. B., & Lukić, T. (2014). Annual and seasonal variability of precipitation in Vojvodina, Serbia. Theoretical and Applied Climatology, 117(1–2), 331–341. http://dx.doi.org/10.1007/s00704-013-1007-9

Trenberth, K. E., Jones, P. D., Ambenje, P., Bojariu, R., Easterling, D., Klein Tank, A., . . . & Zhai, P. (2007). Observations: Surface and Atmospheric Climate Change. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. Tignor, & H. L. Miller (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 236–336). Cambridge, UK; New York, NY: Cambridge University Press.

Urošev, M., Leščešen, I., Štrbac, D., & Dolinaj, D. (2016). Extreme hydrological situations on Danube River – Case study Bezdan hydrological station (Serbia). In S. Erpicum, B. Dewals, P. Archambeau, & M. Pirotton (Eds.), Sustainable Hydraulics in the Era of Global Change: Proceedings of the 4th IAHR Europe Congress (Liege, Belgium, 27-29 July 2016) (pp. 771–778). London, UK: Taylor & Francis Group.

Weatherill, G., & Burton, P. W. (2008). Delineation of shallow seismic source zones using K-means cluster analysis, with application to the Aegean region. Geophysical Journal International, 176(2), 565–588. https://doi.org/10.1111/j.1365-246X.2008.03997.x

World Meteorological Organization (2012). Standardized Precipitation Index - User Guide (WMO-No. 1090). Retrieved from http://www.wamis.org/agm/pubs/SPI/WMO_1090_EN.pdf

World Meteorological Organization & Global Water Partnership (2016). Handbook of Drought Indicators and Indices (WMO-No. 1173). Retrieved from http://www.droughtmanagement.info/literature/GWP_Handbook_of_Drought_Indicators_and_Indices_2016.pdf

Vuković, A., & Vujadinović Mandić, M. (2018). Study on climate change in the Western Balkans region. Sarajevo, Bosnia and Herzegovina: Regional Cooperation Council Secretariat.

Downloads

Published

2019-04-22

How to Cite

Leščešen, I. ., Dolinaj, D. ., Pantelić, M. ., & Popov, S. . (2019). DROUGHT ASSESSMENT IN VOJVODINA (SERBIA) USING K-MEANS CLUSTER ANALYSIS. Journal of the Geographical Institute “Jovan Cvijić” SASA, 69(1), 17–27. https://doi.org/10.2298/IJGI1901017L