METEOROLOGICAL DROUGHT IN SOUTHWEST BULGARIA DURING THE PERIOD 1961–2020

Authors

  • Reni Stoyanova Sofia University “St. Kliment Ohridski”, Faculty of Geology and Geography, Sofia
  • Nina Nikolova Sofia University “St. Kliment Ohridski”, Faculty of Geology and Geography, Sofia

DOI:

https://doi.org/10.2298/IJGI2203243S

Keywords:

seasonal drought, Standardized Precipitation Indices, drought frequency, drought intensity

Abstract

Although drought is a common phenomenon in Southern Europe, including Bulgaria, it can have adverse effects on human life and economic activities (water scarcity, reduced agricultural production, and economic losses to agriculture). This event occurs regionally, but it can spread over large areas. Whether it will be perceived as a hazard depends on the affected areas and the degree of impact. The article aims to provide new insight into the meteorological drought in the most densely populated NUTS 2 region of Bulgaria—the Yugozapaden (Southwestern). Based on Standardized Precipitation Indices (SPI-1 and SPI-3), its occurrence during the period 1961–2020 was analysed in terms of duration, intensity, and magnitude. The maximum drought duration and average drought intensity were determined using SPI-1. The seasonal distribution of drought shows its higher frequency in spring and summer, but on the other side, extreme drought was more common in winter and autumn. The maximum drought duration was observed mainly in the 1990s.

Article metrics

References

Aladaileh, H., Al Qinna, M., Karoly, B., Al-Karablieh, E., & Rakonczai, J. (2019). An Investigation into the Spatial and Temporal Variability of the Meteorological Drought in Jordan. Climate, 7(6). Article 82. https://doi.org/10.3390/cli7060082

Alexandrov, V., & Radeva, S. (2010). SPI as an indicator of drought in South Bulgaria. In A. López-Francos (comp. & collab.), Economics of drought and drought preparedness in a climate change context (pp. 113–115). CIHEAM; FAO; ICARDA; GDAR; CEIGRAM; MARM. http://om.ciheam.org/om/pdf/a95/00801335.pdf

Alexandrov, V. (Ed.). (2011). Metodi za monitoring I ocenka na uyazvimostta ot zasushavane v Balgaria [Methods for monitoring and estimation of drought vulnerability in Bulgaria]. National Institute of Meteorology and Hydrology and Bulgarian Academy of Sciences.

Anđelković, G., & Živković, N. (2007). Precipitation as adverse climatic phenomenon in Negotin. Bulletin of the Serbian Geographical Society, 87(1), 51–62. https://doi.org/10.2298/GSGD0701051A

Bocheva, L., Gospodinov, I., Simeonov, P., & Marinova, T. (2010). Climatological Analysis of the Synoptic Situations Causing Torrential Precipitation Events in Bulgaria over the Period 1961–2007. In V. Alexandrov, M. F. Gajdusek, C. G. Knight, & A. Yotova (Eds.), Global Environmental Change: Challenges to Science and Society in Southeastern Europe (pp. 97–108). Springer. https://doi.org/10.1007/978-90-481-8695-2_9

Bonaccorso, B., Bordi, I., Cancelliere, A., Rossi, G., & Sutera, A. (2003). Spatial Variability of Drought: An Analysis of the SPI in Sicily. Water Resources Management, 17(4), 273–296. https://doi.org/10.1023/A:1024716530289

Caloiero, T., Veltri, S., Caloiero, P., & Frustaci, F. (2018). Drought Analysis in Europe and in the Mediterranean Basin Using the Standardized Precipitation Index. Water, 10(8). Article 1043. https://doi.org/10.3390/w10081043

Ceglar, A., Črepinšek, Z., & Kajfež-Bogataj, L. (2008, May 27–31). Analysis of meteorological drought in Slovenia with two drought indices [Conference paper]. BALWOIS 2008, Ohrid, Republic of Macedonia. https://www.academia.edu/5092888/Analysis_of_meteorological_drought_in_Slovenia_with_two_drought_indices

Cheval, S. (2015). The Standardized Precipitation Index – an overview. Romanian Journal of Meteorology, 12(1–2), 17–64. http://rjm.inmh.ro/articole/vol12-1-2/RJM2015-2.pdf

Dai, A. (2013). Increasing drought under global warming in observations and models. Nature Climate Change, 3, 52–58. https://doi.org/10.1038/nclimate1633

Deniz, Z. A., Deniz, O., & Gönençgil, B. (2016). Observed Variability Standardized Precipitation Index. In Turkey. In 16th International Multidisciplinary Scientific Geoconference & Expo (SGEM 2016) (Vol. 2, pp. 483–490). International Multidisciplinary Scientific GeoConferences.

Djebou, D. C. S. (2017). Bridging drought and climate aridity. Journal of Arid Environments, 144, 170–180. https://doi.org/10.1016/j.jaridenv.2017.05.002

Gocheva, A., Malcheva, K., & Marinova, T. (2010, October 7). Some drought indices for the territory of Bulgaria. 3rd National Conference with International Participation “Opportunities for Limitation the Drought Damages on Agricultural Crops“, Sofia, Bulgaria. https://www.researchgate.net/profile/Krastina-Malcheva/publication/328261747_SOME_DROUGHT_INDICES_FOR_THE_TERRITORY_OF_BULGARIA_Conference_2010pdf/data/5c5406b1299bf12be3f2216a/SOME-DROUGHT-INDICES-FOR-THE-TERRITORY-OF-BULGARIA-Conference-2010.pdf

Eslamian, Е., & Eslamian, F. A. (Eds.). (2017). Handbook of Drought and Water Scarcity: Management of Drought and Water Scarcity. Routledge.

European Commission. (2020). Standardized Precipitation Index (SPI) [Factsheet]. http://edo.jrc.ec.europa.eu/documents/factsheets/factsheet_spi.pdf

Intergovernmental Panel on Climate Change. (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, & L. L. White (Eds.)]. Cambridge University Press. https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-PartA_FINAL.pdf

Kerang, L., & Makarau, A. (1994). Drought and Desertification: Report on the Eleventh Session of the Commission for Climatology (WMO/TD-No 605). World Meteorological Organization. https://library.wmo.int/doc_num.php?explnum_id=9610

Koleva, E., & Alexandrov, V. (2008). Drought in the Bulgarian low regions during the 20th century. Theoretical and Applied Climatology, 92, 113–120. https://doi.org/10.1007/s00704-007-0297-1

Leščešen, I., Dolinaj, I., Pantelić, M., & Popov, S. (2019). Drought Assessment in Vojvodina (Serbia) Using K-Means Cluster Analysis. Journal of the Geographical Institute “Jovan Cvijić” SASA, 69(1), 17–27. https://doi.org/10.2298/IJGI1901017L

Markandya, A., & Mysiak, J. (2010). The economic costs of droughts. In A. López-Francos (comp. & collab.), Economics of drought and drought preparedness in a climate change context (pp. 131–138). CIHEAM; FAO; ICARDA; GDAR; CEIGRAM; MARM. http://om.ciheam.org/om/pdf/a95/00801338.pdf

Matev, S. (2020). Savremenni kolebania na klimata v Balgaria [Contemporary climate variability in Bulgaria; Doctoral dissertation]. Sofia University “St. Kliment Ohridski”.

McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology (Vol. 17, No. 22, pp. 179-183). https://climate.colostate.edu/pdfs/relationshipofdroughtfrequency.pdf

McKee, T. B., Doesken, N. J., & Kleist, J. (1995). Drought monitoring with multiple time scales. In Proceedings of the 9th Conference on Applied Climatology (pp. 233–236). American Meteorological Society.

Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391(1–2), 202–216. https://doi.org/10.1016/j.jhydrol.2010.07.012

Mochurova, M., Kaloyanov, T., & Mishev, P. (2010). Impacts of Climate Change on Winter Tourism in Borovets. Ikonomicheski Izsledvania, 2, 98–126. https://www.iki.bas.bg/Journals/EconomicStudies/2010/2010_2/8_Milkana_f.pdf

National Drought Mitigation Center. (2018). SPI Program (SPI Generator; Version, 1.7.5) [Computer software]. National Drought Mitigation Center. https://drought.unl.edu/monitoring/SPI/SPIProgram.aspx

Nikolova, N., Alieva, G., Voislavova, I. (2012). Drought Periods in Non-Mountainous Part of South Bulgaria on the Background of Climate Change. Geographica Pannonica, 16(1) 18–25. https://doi.org/10.5937/GeoPan1201018N

Nikolova, N., Micu, D. M., Dumitrescu, A., Radeva, K., Paraschiv, M., Cheval, S., & Todorov, L. (2022). A SPEI-Based Approach to Drought Hazard, Vulnerability and Risk Analysis in the Lower Danube River Region. In A. Negm, L. Zaharia, & G. Ioana-Toroimac (Eds.), The Lower Danube River. Earth and Environmental Sciences Library (pp. 299–328). Springer. https://doi.org/10.1007/978-3-031-03865-5_10

Nikolova, N., & Radeva, K. (2019). Data Processing for Assessment of Meteorological and Hydrological Drought. In Y. Murayama, D. Velev, P. Zlateva, & J. J. Gonzalez (Eds.), IFIP Advances in Information and Communication Technology: Vol. 516. Information Technology in Disaster Risk Reduction (pp. 145–160). Springer. https://doi.org/10.1007/978-3-030-18293-9_13

Nikolova, N., Nejedlík, P., Lapin, M. (2016). Temporal variability and spatial distribution of drought events in the lowlands of Slovakia. Geofizika, 33(2), 119–135. https://doi.org/10.15233/gfz.2016.33.10

Popova, Z., Ivanova, M., Martins, D., Pereira, L. S., Doneva, K., Alexandrov, V., & Kercheva, M. (2014). Vulnerability of Bulgarian agriculture to drought and climate variability with focus on rainfed maize systems. Natural Hazards, 74, 865–886. https://doi.org/10.1007/s11069-014-1215-3

Popova, Z., Ivanova, M., Pereira, L., Alexandrov, V., Kercheva, M., Doneva, K., & Martins, D. (2015). Droughts and Climate Change in Bulgaria: Assessing Maize Crop Risk and Irrigation Requirements in Relation to Soil and Climate Region. Bulgarian Journal of Agricultural Science, 21(1), 35–53. https://www.agrojournal.org/21/01-04.pdf

Rachev, G., & Nikolova, N. (2009). Klimatat na Balgaria [Climate of Bulgaria]. Annual of Sofia University “St. Kliment Ohridski”, Faculty of Geology and Geography: Book 2 — Geography, 101, 17–29.

Radeva, K., Nikolova, N., & Gera, M. (2018). Assessment of hydro-meteorological drought in the Danube Plain, Bulgaria. Hrvatski geografski glasnik, 80(1), 7–25. https://doi.org/10.21861/HGG.2018.80.01.01

Raev, I., & Rosnev, B. (2018). The Impact of Drought on Natural Forest Ecosystems. In I. Raev (Ed.), Drought in Bulgaria: A Contemporary Analog for Climate Change (pp. 117–136). Routledge. https://doi.org/10.4324/9781351159524

Spinoni, J., Gustavo, N., & Vogt, J. V. (2017). Pan-European seasonal trends and recent changes of drought frequency and severity. Global and Planetary Change, 148, 113–130. https://doi.org/10.1016/j.gloplacha.2016.11.013

Spinoni, J., Vogt, J. V., Naumann, G., Barbosa, P., & Dosio, A. (2018). Will drought events become more frequent and severe in Europe? International Journal of Climatology, 38(4), 1718–1736. https://doi.org/10.1002/joc.5291

Spiridonov, V., & Balabanova, S. (2021). The impact of climate change on intensive precipitation and flood types in Bulgaria. In M.-M. Nistor (Ed.), Climate and Land Use Impacts on Natural and Artificial (pp. 153–169). https://doi.org/10.1016/B978-0-12-822184-6.00001-6

Stoychev, K., Gospodinova, V., & Klisarova, M. (2021). The New Jobs: Transition from Coal to a Modern Economy. WWF. https://www.euki.de/en/euki-publications/the-new-jobs/

Stoychev, K., Gospodinova, V., Cholakova, Z., Kostova, I., & Nikolova, N. (2019). Just transition for the Coal-Mining regions in Southwest Bulgaria: Development scenarios. WWF. https://regionsbeyondcoal.eu/wp-content/uploads/2019/05/spravedliv_prehod_en_2805_low_res.pdf

Svoboda, M., & Fuchs, B. A. (2016). Handbook of Drought Indicators and Indices. World Meteorological Organization; Global Water Partnership; Integrated Drought Management Programme. https://library.wmo.int/doc_num.php?explnum_id=3057

Svoboda, M., Hayes, M., & Wood, D. (2012). Standardized Precipitation Index: User Guide (WMO-No. 1090). World Meteorological Organization. https://library.wmo.int/doc_num.php?explnum_id=7768

Topliiski, D. (2006). Klimat na Balgaria [Climate of Bulgaria]. Fondation "Amstels".

Tran, L., Knight, C. G., & Wesner, V. (2002). Drought in Bulgaria and atmospheric synoptic conditions over Europe. GeoJournal, 57, 149–157. http://dx.doi.org/10.1023/B:GEJO.0000003616.82958.e3

Traykova, Zh. (2007). Ekologichni celi na Yugozapaden rayon za planirane [Ecological objectives of the Yugozapaden planning region]. Upravlenie i ustoichivo razvitie, 3–4(18), 390–396. http://oldweb.ltu.bg/jmsd/files/articles/18/18-71_J_Traykova.pdf

Trnka, M., Hlavinka, P., & Semenov, M. A. (2015). Adaptation options for wheat in Europe will be limited by increased adverse weather events under climate change. Journal of the Royal Society Interface, 12(12), Article 20150721. https://doi.org/10.1098/rsif.2015.0721

Trnka, M., Olesen, J. E., Kersebaum, K. C., Skjelvåg, A. O., Eitzinger, J., Seguin, B., Peltonen-Sainio, P., Rötter, R., Iglesias, A., Orlandini, S., Dubrovský, M., Hlavinka, P., Balek, J., Eckersten, H., Cloppet, E., Calanca, P., Gobin, A., Vučetić, V., Nejedlik, P., . . . Žalud, Z. (2011). Agroclimatic conditions in Europe under climate change. Global Change Biology, 17, 2298–2318. https://doi.org/10.1111/j.1365-2486.2011.02396.x.

Van Loon A. F. (2015). Hydrological drought explained. WIREs Water, 2(4), 359–392. https://doi.org/10.1002/wat2.1085

Vicente-Serrano, S. M., Lopez-Moreno, J.-I., Beguería, S., Lorenzo-Lacruz, J., Sanchez-Lorenzo, A., García-Ruiz, J. M., Azorin-Molina, C., Morán-Tejeda, E., Revuelto, J., Trigo, R., Coelho, F., & Espej, F. (2014). Evidence of increasing drought severity caused by temperature rise in southern Europe. Environmental Research Letters, 9(4), Article 044001. https://doi.org/10.1088/1748-9326/9/4/044001

Wang, Q., Zhang, R., Qi, J., Zeng, J., Wu, J., Shui, W., Wu, X., & Li, J. (2022). An improved daily standardized precipitation index dataset for mainland China from 1961 to 2018. Scientific Data, 9, Article 124. https://doi.org/10.1038/s41597-022-01201-z

Wilhite, D. A., Sivakumar, M. V. K., & Wood, D. A. (Eds.). (2000). Early Warning Systems for Drought Preparedness and Drought Management. Proceedings of an Expert Group Meeting held in Lisbon, Portugal, 5-7 September 2000. World Meteorological Organization.

Živanović, S., & Gocić, M. (2022). Forest Fires in Serbia—Influence of Humidity Conditions. Journal of the Geographical Institute “Jovan Cvijić” SASA, 72(2), 221–228. https://doi.org/10.2298/IJGI2202221Zy

Downloads

Published

2022-12-20

How to Cite

Stoyanova, R., & Nikolova, N. (2022). METEOROLOGICAL DROUGHT IN SOUTHWEST BULGARIA DURING THE PERIOD 1961–2020. Journal of the Geographical Institute “Jovan Cvijić” SASA, 72(3), 243–255. https://doi.org/10.2298/IJGI2203243S