ESTIMATION OF SOIL EROSION DYNAMICS USING REMOTE SENSING AND SWAT IN KOPAONIK NATIONAL PARK, SERBIA

Authors

  • Ivan M. Potić Republic Geodetic Authority, Belgrade
  • Nina B. Ćurčić Geographical Institute “Jovan Cvijić” SASA, Belgrade
  • Milan M. Radovanović Geographical Institute “Jovan Cvijić” SASA, Belgrade; South Ural State University, Institute of Sport, Tourism and Service, Chelyabinsk
  • Gorica B. Stanojević Geographical Institute “Jovan Cvijić” SASA, Belgrade
  • Slavica B. Malinović-Milićević Geographical Institute “Jovan Cvijić” SASA, Belgrade
  • Stanislav A. Yamashkin National Research Ogarev Mordovia State University, Institute of Electronics and Lighting Engineering, Saransk
  • Anatoliy A. Yamashkin National Research Ogarev Mordovia State University, Faculty of Geography, Saransk

DOI:

https://doi.org/10.2298/IJGI2103231P

Keywords:

sedimentation, surface runoff, Landsat, mountain area, LCLU change

Abstract

Soil erosion is a global environmental and economic problem that is significantly related to land-use changes. Over the last decades, several mountain areas in Serbia were exposed to strong human pressure caused by winter tourism development. The largest ski center in Serbia is situated on Kopaonik Mountain within the boundaries of Kopaonik National Park, where the conflict between economic and conservation goals is rapidly growing. In this study, we calculated the sedimentation and surface runoff in three sub-basins in the area of the Kopaonik ski resort for two years (1984 and 2018) using the SWAT and analyzed the changes that occurred during the observed period. The results show an increase in surface runoff and sediment yield in sub-basins 1 and 3 and a decrease in sub-basin 2. Analysis of land cover change shows an expansion of evergreen forests, appearance of barren soil and urban areas, reduction of mixed forests and pastures, and appearance of deciduous forests. These findings indicate that in the area studied, the dominant processes are the development of tourism and natural revegetation of abandoned agricultural land. Application of remote sensing techniques and SWAT contributes to identifying and monitoring land degradation problems and improving conservation and management practice.

Article metrics

References

Arnold, J. G., Kiniry, J. R., Srinivasan, R., Williams, J. R., Haney, E. B., & Neitsch, S. L. (2012). Soil and Water Assessment Tool, Input/Output Documentation, Version 2012. Texas, USA: Texas Water Resources Institute.

Belij, S., Nešić, D., & Milovanović, B. (2008). Savremeni geomorfološki procesi i oblici reljefa periglacijane sredine Stare Planine [Recent geomorphological processes and landforms of periglacial environment of the Stara Planina Mountain and their protection]. Zaštita prirode, 59(1–2), 19–50. Retrieved from https://www.zzps.rs/wp/casopisi_pdf/011/casopis.pdf

Borah, D. K., Yagow, G., Saleh, A., Barnes, P. L., Rosenthal, W., Krug, E. C., & Hauck, L. M. (2006). Sediment and nutrient modeling for TMDL development and implementation. Transactions of the ASABE, 49(4), 967–986. https://doi.org/10.13031/2013.21742

Bullock, P. (2004). Climate change impacts. In D. Hillel (Ed.), Encyclopedia of Soils in the Environment (pp. 254–262). New York, NY: Academic Press.

Carić, N. (1968) Antropogeni faktori ubrzane erozije tla i konzervacija zemljišta na zapadnom Kopaoniku [Anthropogenic factors of accelerated soil erosion and conservation in western Kopaonik]. (Doctoral dissertation). Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia.

Cvetković, V., Poli, G., Resimić-Šarić, K., Prelević, D., & Lazarov, M. (2002). Tertiary post-collision granitoid of Mt. Kopaonik (Serbia) – petrogenetic constraints based on new geochemical data. Geologica Carpathica, 53, 1–7. Retrieved from http://www.geologicacarpathica.com/data/files/files/special%20issue/C/Cvetkovic_etal_02.pdf

Ćalić, J., Milošević, M. V., Milivojević, M., & Gaudenyi, T. (2017). Reljef Srbije [Relief of Serbia]. In M. Radovanović (Ed.), Geografija Srbije (Posebna izdanja, Knjiga 91) [Geography of Serbia (Special issues, Book 91)] (pp. 22–92). Belgrade, Serbia: Geographical Institute “Jovan Cvijić” SASA.

Ćurčić, N. B. (2017). Prostorno-vremenska analiza antropogenih uticaja na prirodne ekosisteme u Nacionalnom parku „Kopaonik“ [Spatio-temporal analysis of anthropogenic impact on natural ecosystems in National Park “Kopaonik”]. (Doctoral Dissertation). University of Belgrade - Faculty of Geography, Belgrade, Serbia.

Ćurčić, N. B., Milinčić, U. V., Stranjančević, A., & Milinčić, M. A. (2019). Can winter tourism be truly sustainable in natural protected areas? Journal of the Geographical Institute “Jovan Cvijić” SASA, 69(3), 241–252. https://doi.org/10.2298/IJGI1903241C

Divac, D., Milivojević, N., Grujović, N., Stojanović, B., & Simić, Z. (2009). A Procedure for State Updating of SWAT-Based Distributed Hydrological Model for Operational Runoff Forecasting. Journal of Serbian Society for Computational Mechanics, 3(1), 298–326. Retrieved from http://www.sscm.kg.ac.rs/jsscm/downloads/Vol3No1/A_Procedure_for_State_Updating_of_SWAT-Based_Distributed_Hydrological-13.pdf

Djordjevic, D. S., Secerov, V., Filipovic, D., Lukic, B., & Jeftic, M. R. (2016). The impact of climate change on the planning of mountain tourism development in Serbia: case studies of Kopaonik and Zlatibor. Fresenius Environmental Bulletin, 25(11), 5027–5034. Retrieved from https://www.prt-parlar.de/download_feb_2016/

Duro, D. C., Franklin, S. E., & Dubé, M. G. (2012). A Comparison of Pixel-Based and Object-Based Image Analysis with Selected Machine Learning Algorithms for the Classification of Agricultural Landscapes Using SPOT-5 HRG Imagery. Remote Sensing of Environment, 118, 259–272. https://doi.org/10.1016/j.rse.2011.11.020

Food and Agriculture Organization, Applied Systems Analysis, ISRIC—World Soil Information, Institute of Soil Science, Chinese Academy of Sciences, & Joint Research Centre of the European Commission. (2012). Harmonized World Soil Database (v1.2). Retrieved from http://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/

Ganasri, B. P., & Ramesh, H. (2016). Assessment of soil erosion by RUSLE model using remote sensing and GIS - A case study of Nethravathi Basin. Geoscience Frontiers, 7(6), 953–961. https://doi.org/10.1016/j.gsf.2015.10.007

Gassman, P. W., Reyes, M. R., Green, C. H., & Arnold, J. G. (2007). The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. Transactions of the ASABE, 50(4), 1211–1250. https://doi.org/10.13031/2013.23637

Gavrilović, S. (1979). Hipsometrija površine reljefa Kopaonika [Hypsometry of the Kopaonik relief surface]. Collection of papers of the Geographical Institute of the Faculty of Sciences – University of Belgrade, 26, 93–103.

Goyal, M. K., Singh, V., & Meena, A. H. (2015). Geospatial and hydrological modeling to assess hydropower potential zones and site location over rainfall dependent Inland catchment. Water Resources Management, 29(8), 2875–2894. https://doi.org/10.1007/s11269-015-0975-1

Japan Aerospace Exploration Agency. (2017). ALOS Global Digital Surface Model "ALOS World 3D - 30m (AW3D30)” [Data set]. Retrieved from http://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm

Jha, M., Arnold, J. G., Gassman, P. W., Giorgi, F., & Gu, R. R. (2006). Climate change sensitivity assessment on upper Mississippi river basin streamflows using SWAT. Journal of the American Water Resources Association 42, 997–1015. https://doi.org/10.22004/ag.econ.18419

Jović, N. (1968). Vertikalni raspored zemljišnih tvorevina na Kopaoniku [Vertical disposition of the soil formations on the Kopaonik Mt.]. Šumarstvo, 21(1-2), 7–16.

Kostadinov, S., Dragović, N., Zlatić, M., & Todosijević, M. (2008). Uticaj protiverozionih radova u slivu reke Toplice uzvodno od brane „Selova” na intenzitet erozije zemljišta [Impact of erosion control works on soil erosion intensity in the upper part of the river Toplica drainage basin]. Vodoprivreda, 40, 115–126. Retrieved from https://www.vodoprivreda.net/wp-content/uploads/2014/08/uticaj1.pdf

Kostadinov, S., Zlatić, M., Dragićević, S., Novković, I., Košanin, O., Borisavljević, A., Lakićević, M., & Mladjan, D. (2014). Anthropogenic influence on erosion intensity changes in the Rasina river watershed - Central Serbia. Fresenius Environmental Bulletin, 23(1), 254–263. Retrieved from https://www.prt-parlar.de/download_feb_2014/

Kumar, S., Singh, A., & Shrestha, D. P. (2016). Modelling spatially distributed surface runoff generation using SWAT-VSA: a case study in a watershed of the north-west Himalayan landscape. Modeling Earth Systems and Environment, 2(1), 1−11. https://doi.org/10.1007/s40808-016-0249-9

Lakušić, D. (1993). Visokoplaninska flora Kopaonika – ekološko-fitogeografska studija [Highland flora of Kopaonik Mountain – ecological-phytogeographical study]. (Master´s thesis). Faculty of Biology, University of Belgrade, Belgrade, Serbia.

Lazarević, R. (2009). Erozija u Srbiji [Erosion in Serbia]. Belgrade, Serbia: Želnid.

Li, J., Liu, C., Wang, Z., & Liang, K. (2015). Two universal runoff yield models: SCS vs. LCM. Journal of Geographical Sciences, 25(3), 311–318. https://doi.org/10.1007/s11442-015-1170-2

Mas, J. F., & Flores, J. J. (2008). The Application of Artificial Neural Networks to the Analysis of Remotely Sensed Data. International Journal of Remote Sensing, 29(3), 617–663. https://doi.org/10.1080/01431160701352154

Mausbach, M. J., & Dedrick, A. R. (2004). The length we go: Measuring environmental benefits of conservation practices. Journal of Soil and Water Conservation, 59(5), 96A–103A. Retrieved from https://www.jswconline.org/content/59/5/96A

Milivojević, N., Simić, Z., Orlić, A., Milivojević, V., & Stojanović, B. (2009). Parameter Estimation and Validation of the Proposed SWAT Based Rainfall-Runoff Model – Methods and Outcomes. Journal of Serbian Society for Computational Mechanics, 3(1), 86–110. Retrieved from http://www.sscm.kg.ac.rs/jsscm/downloads/Vol3No1/Parameter_Estimation_and_Validation_of_the_Proposed_SWAT_Based4.pdf

Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2011). Soil and Water Assessment Tool, Theoretical Documentation. Texas, USA: Texas Water Resources Institute.

Pavićević, N., Antonović, G., & Nikodijević, V. (1968). Razvojni stadijumi zemljišta na Kopaoniku [Developmental stages of soils on Kopaonik Mountain]. Zbornik radova Instituta za proučavanje zemljišta, 1, 31-61.

Potić, I. (2018). Geosistemska analiza višestrukih stresova životne sredine u valorizaciji malih hidroelektrana Srbije [Geosystem Analysis of Multiple Environmental Stresses in the Evaluation of Small Hydro Power Plants in Serbia]. (Doctoral Dissertation). University of Belgrade - Faculty of Geography, Belgrade, Serbia.

Potić, I., & Potić, M. (2017). Remote Sensing Machine Learning Algorithms in Environmental Stress Detection – Case Study of Pan-European South Section of Corridor 10 in Serbia. The University Thought - Publication in Natural Sciences, 7(2), 41–46. https://doi.org/10.5937/univtho7-14957

Potić, I. M., Ćurčić, N. B., Potić, M. M., Radovanović, M. M., & Tretiakova, T. N. (2017). Remote Sensing Role in Environmental Stress Analysis: Еаst Serbia Wildfires Case Study (2007–2017). Journal of the Geographical Institute “Jovan Cvijić” SASA, 67(3), 249–264. https://doi.org/10.2298/IJGI1703249P

Rallison, R. E., & Miller, N. (1981). Past, present and future SCS runoff procedure. In V. P. Singh (Ed.), Rainfall runoff relationship (pp. 353–364). Littleton, CO: Water Resources Publication.

Republic Hydrometeorological Service of Serbia. (1981–2010). Meteorološki godišnjak - klimatološki podaci [Meteorological Yearbook - climatological data]. Retrieved from http://www.hidmet.gov.rs/ciril/meteorologija/klimatologija_godisnjaci.php

Ristić, R., Kašanin-Grubin, M., Radić, B., Nikić, Z., & Vasiljević, N. (2012). Land degradation at the Stara Planina ski resort. Environmental Management, 49(3), 580–592. https://doi.org/10.1007/s00267-012-9812-y

Ristić, R., Vasiljević, N., Radić, B., & Radivojević, S. (2009). Degradation of landscape in Serbian ski resorts – aspects of scale and transfer of impacts. Spatium, 20, 49–52. https://doi.org/10.2298/SPAT0920049R

Rospriandana, N., & Fujii, M. (2017). Assessment of small hydropower potential in the Ciwidey subwatershed, Indonesia: a GIS and hydrological modeling approach. Hydrological Research Letters, 11(1), 6–11. https://doi.org/10.3178/hrl.11.6

Schmid, S. M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S., Schuster, R., Tischler, M., & Ustaszewski, K. (2008). The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss Journal of Geosciences, 101(1), 139–183. https://doi.org/10.1007/s00015-008-1247-3

Setyorini, A., Khare, D., & Pingale, S. M. (2017). Simulating the impact of land use/land cover change and climate variability on watershed hydrology in the Upper Brantas basin, Indonesia. Applied Geomatics, 9(3), 191–204. https://doi.org/10.1007/s12518-017-0193-z

Simić, Z., Prohaska, S., Milivojević, N., & Orlić, A. (2004). Modeliranje procesa padavine-oticaj na podslivovima sliva Drine metodom SWAT [Modeling of the precipitation/runoff process in sub-catchments of the Drina river basin by the SWAT method]. Vodoprivreda, 36, 113–122. Retrieved from https://www.vodoprivreda.net/wp-content/uploads/2014/08/modeliranje-2.pdf

Singh, V., & Goyal, M. K. (2017). Unsteady high velocity flood flows and the development of rating curves in a Himalayan Basin under climate change scenarios. Journal of Hydrologic Engineering, 22(8), 04017023. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001530

Skijališta Srbije. (2020). Ski centar Kopaonik – o centru [Ski center Kopaonik – about the center]. Retrieved on May 5, 2018 from http://www.skijalistasrbije.rs/sr/o-centru-kopaonik

Ski regions in Davos Klosters. Facts & figures: transportation & slopes. (2021). Retrieved on August 1, 2018 from https://www.davos.ch/en/activities/snowsports/ski-snowboard/ski-regions-in-davos-klosters

Statistical Office of the Republic of Serbia. (2014). Comparative overview of the number of population in 1948, 1953, 1961, 1971, 1981, 1991, 2002 and 2011 – data by settlements. Retrieved from https://pod2.stat.gov.rs/ObjavljenePublikacije/Popis2011/Knjiga20.pdf

Statistical Office of the Republic of Serbia. (2019). Opštine i regioni u Republici Srbiji, 2019 [Municipalities and Regions in the Republic of Serbia, 2019]. Retrieved from https://publikacije.stat.gov.rs/G2019/Pdf/G201913046.pdf

Statistical Office of the Socialist Republic of Serbia. (1985). Opštine u SR Srbiji 1984. Statistički podaci [Municipalities in SR Serbia 1984. Statistical data]. Retrieved from http://publikacije.stat.gov.rs/G1985/Pdf/G19852002.pdf

Stevanović, V., Vukojičić, S., Šinžar-Sekulić, J., Lazarević, M., Tomović, G., & Tan, K. (2009). Distribution and diversity of Arctic-Alpine species in the Balkans. Plant Systematics and Evolution, 283(3–4), 219–235. https://doi.org/10.1007/s00606-009-0230-4

Tadono, T., Nagai, H., Ishida, H., Oda, F., Naito, S., Minakawa, K., & Iwamoto, H. (2016). Generation of the 30 m-mesh Global Digital Surface Model by ALOS PRISM. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41-B4, 157–162. https://doi.org/10.5194/isprs-archives-XLI-B4-157-2016

United States Geological Survey, Earth Resources Observation and Science Center. (2018). Landsat Missions. Landsat 5. Retrieved from https://www.usgs.gov/core-science-systems/nli/landsat/landsat-5?qt-science_support_page_related_con=0#qt-science_support_page_related_con

United States Geological Survey, Earth Resources Observation and Science Center. (2019a). Landsat 5 Thematic Mapper C1 Level-1 [Data set]. Retrieved from https://doi.org/10.5066/F7N015TQ

United States Geological Survey, Earth Resources Observation and Science Center. (2019b). Landsat 8 OLI/TIRS C1 Level-1 [Data set]. Retrieved from https://doi.org/10.5066/F71835S6

University Corporation for Atmospheric Research, & National Centre for Environmental Prediction. (2018). NCEP Climate Forecast System Reanalysis. Retrieved from https://rda.ucar.edu

University of Belgrade - Faculty of Mining and Geology. (2010). Osnovne geološke karte Srbije 1:100000 [Basic geological maps of Serbia 1:100000]. Retrieved from http://geoliss.mre.gov.rs/OGK/RasterSrbija/

Urošević, M., Pavlović, Z., Klisić, M., Karamata, S., Malešević, M., Stefanović, M., Marković, O., & Trifunović, S. (1973). Osnovna geološka karta 1:100000, Tumač za list Novi Pazar K34-30 [Basic Geological Map 1:100,000, Interpreter for sheet Novi Pazar K34-30]. Belgrade, Serbia: Savezni geološki zavod.

Urošević, M., Pavlović, Z., Klisić, M., Malešević, M., Stefanović, M., Marković, O., & Trifunović, S. (1973). Osnovna geološka karta 1:100000, Tumač za list Vrnjci K34-18 [Basic Geological Map 1:100,000, Interpreter for sheet Vrnjci K34-18]. Belgrade, Serbia: Savezni geološki zavod.

Vasović, M. (1988). Kopaonik. Belgrade, Serbia: Serbian Geographical Society.

Vigiak, O., Malagó, A., Bouraoui, F., Vanmaercke, M., & Poesen, J. (2015). Adapting SWAT hillslope erosion model to predict sediment concentrations and yields in large Basins. Science of the Total Environment, 538, 855–875. https://doi.org/10.1016/j.scitotenv.2015.08.095

Williams, J. R. (1995). The EPIC Model. In V. P. Singh (Ed.), Computer Models of Watershed Hydrology (pp. 909–1000). Highlands Ranch, USA: Water Resources Publications.

Williams, J. R., & Hann, R. W. (1978). Optimal Operation of Large Agricultural Watersheds with Water Quality Constraints. Texas, USA: Texas Water Resources Institute.

Wishmeier, W. H., & Smith, D. D. (1978). Predicting Rainfall Erosion Losses – A Guide to Conservation Planning. Maryland, USA: US Department of Agriculture.

Yang, Q., & Zhang, X. (2016). Improving SWAT for simulating water and carbon fluxes of forest ecosystems. Science of the Total Environment, 569–570, 1478–1488. https://doi.org/10.1016/j.scitotenv.2016.06.238

Zakon o nacionalnim parkovima [The law on National Parks]. Službeni glasnik Republike Srbije br. 84/2015-15, 95/2018-267 - dr. zakon (2018).

Zlatic, M., & Vukelic, G. (2002). Economic and Social Revival of a Degraded Region in Serbia. Mountain Research and Development, 22(1), 26–28. Retrieved from http://www.bioone.org/doi/full/10.1659/0276-4741%282002%29022%5B0026%3AEASROA%5D2.0.CO%3B2

Downloads

Published

2021-12-20

How to Cite

Potić, I. M., Ćurčić, N. B., Radovanović, M. M., Stanojević, G. B., Malinović-Milićević, S. B., Yamashkin , S. A. ., & Yamashkin , A. A. (2021). ESTIMATION OF SOIL EROSION DYNAMICS USING REMOTE SENSING AND SWAT IN KOPAONIK NATIONAL PARK, SERBIA. Journal of the Geographical Institute “Jovan Cvijić” SASA, 71(3), 231–247. https://doi.org/10.2298/IJGI2103231P

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)