• Ruslan Suleymanov Ufa Federal Research Centre Russian Academy of Sciences, Ufa Institute of Biology, Laboratory of Soil Science, Ufa; Karelian Research Centre Russian Academy of Science, Department of Multidisciplinary Scientific Research, Laboratory for Ecological Monitoring and Modeling, Petrozavodsk; Ufa State Petroleum Technological University, Decarbonization Technologies Center, Ufa
  • Rita Kamalova Ufa University of Science and Technology, Department of Geology, Hydrometeorology and Geoecology, Ufa; Ufa State Petroleum Technological University, Decarbonization Technologies Center, Ufa
  • Azamat Suleymanov Ufa Federal Research Centre Russian Academy of Sciences, Ufa Institute of Biology, Laboratory of Soil Science, Ufa; Ufa State Petroleum Technological University, Department of Environmental Protection and Prudent Exploitation of Natural Resources, Ufa
  • Ilgiza Adelmurzina Ufa University of Science and Technology, Department of Geodesy, Cartography and Geographic Information Systems, Ufa
  • Azamat Nigmatullin Ufa University of Science and Technology, Department of Geodesy, Cartography and Geographic Information Systems, Ufa
  • Rishat Khamidullin Ufa University of Science and Technology, Department of Geodesy, Cartography and Geographic Information Systems, Ufa
  • Elvera Bakieva Ufa University of Science and Technology, Department of Geodesy, Cartography and Geographic Information Systems, Ufa
  • Marija Yurkevich Institute of Biology of the Karelian Research Centre Russian Academy of Science, Laboratory for Soil Ecology and Soil Geography, Petrozavodsk



climate change, agroclimatic resources, drainage reclamation, change in soil properties, yields


The article provides an assessment of climatic characteristics and changes in floodplain soils after the implementation of a drainage system. The study was conducted in the northern forest-steppe zone of the East European Plain (Republic of Bashkortostan, Russia). Through the analysis of long-term meteorological observations from 1961 to 2020, it was found that there was a steady increase in air temperature in all months and throughout the year, an increase in the period with positive temperatures, a slight increase in annual precipitation, and a reduction in precipitation during certain months of the warm season. Over the past 40 years, the drainage system has transformed the soil cover from Gleysols to Anthrosols, due to a decrease in the level of groundwater, agricultural use, as well as warming of the climate in the region. Thus, the transformation of soil cover can potentially contribute to climate change through the depletion of soil organic carbon stocks and increased greenhouse gas emissions. Nevertheless, currently, the natural and climatic conditions, morphological, water-physical, and agrochemical properties of Anthrosols allow for the production of two harvests of fodder crop (Bromus inermis L.) during the vegetation period. In general, the change in climatic indicators in the study area is consistent with the global trend. Our results underscore the sensitivity of soil systems to climatic variations and human activities, highlighting the need for local studies to understand regional and global environmental changes.

Article metrics


Abakumov, E., Suleymanov, A., Guzov, Y., Titov, V., Vashuk, A., Shestakova, E., & Fedorova, I. (2022). Ecosystem services of the cryogenic environments: identification, evaluation and monetisation - A review. Journal of Water and Land Development, 52(1–3), 1–8.

Adelmurzina, I. F., Bigildina, E. R., & Suleymanov, R. R. (2021). Rol' prirodno-klimaticheskikh osobennostey Respubliki Bashkortostan v razmeshchenii meliorativnykh kompleksov [The role of natural and climatic features of the Republic of Bashkortostan in the formation of reclamation complexes]. Regional Geosystems, 45(3), 273–287.

Arauzo, M., & Valladolid, M. (2013). Drainage and N-leaching in alluvial soils under agricultural land uses: Implications for the implementation of the EU Nitrates Directive. Agriculture, Ecosystems & Environment, 179, 94–107.

Arinushkina, E. V. (1970). Rukovodstvo po khimicheskomu analizu pochv [Soil chemical analysis guide]. Moscow State University.

Ball, B. C., Lang, R. W., O'Sullivan, M. F., & Franklin, M. F. (1989). Cultivation and nitrogen requirements for continuous winter barley on a gleysol and a cambisol. Soil and Tillage Research, 13(4), 333–352.

Barbosa, M. V., Fundora, A. B., Silva, A. O., Espinosa, R. R., Saggin Júnior, O. J., & Carbone Carneiro, M. A. (2021). Aggregation of a Ferruginous Nodular Gleysol in a pasture area in Cuba, under the influence of Arbuscular mycorrhizal fungi associated with hybrid Urochloa. Soil and Tillage Research, 208, Article 104905.

Bashkir Department of Hydrometeorology and Environmental Monitoring. (n.d.). Data Fund of Meteorological Yearbooks. Retrieved January 17, 2023 from

Bogdan, E. A., Kamalova, R. G., Suleymanov, A. R., Belan, L. N., & Tuktarova, I. О. (2022). Changing climatic indicators and mapping of soil temperature using Landsat data in the Yangan-Tau Unesco Global Geopark. SOCAR Proceedings, Special Issue, 2, 32–41.

Brown, R., Zhang, Z., Comeau, L-P., & Bedard-Haughn, A. (2017). Effects of drainage duration on mineral wetland soils in a Prairie Pothole agroecosystem. Soil and Tillage Research, 168, 187–197.

Buchen, C., Lewicka-Szczebak, D., Fuß, R., Helfrich, M., Flessa, H., & Well, R. (2016). Fluxes of N2 and N2O and contributing processes in summer after grassland renewal and grassland conversion to maize cropping on a Plaggic Anthrosol and a Histic Gleysol. Soil Biology and Biochemistry, 101, 6–19.

Chalhoub, M., Gabrielle, B., Tournebize, J., Chaumont, C., Maugis, P., Girardin, C., Montagne, D., Baveye, P. C., & Garnier, P. (2020). Direct measurement of selected soil services in a drained agricultural field: Methodology development and case study in Saclay (France). Ecosystem Services, 42, Article 101088.

de Vries, F. T., Thébault, E., Liiri, M., Birkhofer, K., Tsiafouli, M. A., Bjørnlund, L., Bracht Jørgensen, H., Brady, M. V., Christensen, S., de Ruiter, P. C., d’Hertefeldt, T., Frouz, J., Hedlund, K., Hemerik, L., Hol, W. H. G., Hotes, S., Mortimer, S. R., Setälä, H., Sgardelis, S. P., … Bardgett, R. D. (2013). Soil food web properties explain ecosystem services across European land use systems. Proceedings of the National Academy of Sciences, 110(35), 14296–14301.

Gabbasova, I. M., Suleimanov, R. R., Sitdikov, R. N., Garipov, T. T., & Komissarov, A. V. (2006). The effect of long-term irrigation on the properties of leached chernozems in the forest-steppe of the southern Cis-Ural region. Eurasian Soil Science, 39(3), 283–289.

Galimova, R. G. (2017). Klimat Respubliki Bashkortostan [Climate of the Republic of Bashkortostan]. Bashkir State University.

Galimova, R. G., Perevedentsev, Yu. P., & Yanaev, G. A. (2019). Agroklimaticheskiye resursy Respubliki Bashkortostan [Agro-climatic resources of the Republic of Bashkortostan]. Proceedings of Voronezh State University. Series: Geography. Geoecology, 3, 29–39.

Galimova, R., & Silantyev, K. (2019). The analysis of the long-term dynamic of the amount of atmospheric precipitation on the territory of the Republic of Bashkortostan. IOP Conference Series: Earth and Environmental Science, 321, Article 012020.

Gramlich, A., Stoll, S., Stamm, C., Walter, T., & Prasuhn, V. (2018). Effects of artificial land drainage on hydrology, nutrient and pesticide fluxes from agricultural fields – A review. Agriculture, Ecosystems & Environment, 266, 84–99.

Ivanov, N. N. (1954). Ob opredelenii velichin isparyayemosti [On the determination of the values of evaporation]. Proceedings of the Russian Geographical Society, 86(2), 189–196.

IUSS Working Group WRB. (2015). World Reference Base for Soil Resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps [World Soil Resources Reports No. 106]. FAO.

Kadilnikov, I. P. (Ed.). (1964). Fiziko-geograficheskoye rayonirovaniye Bashkirskoy ASSR [Physiographic zoning of Bashkir ASSR]. Bashkir State University.

Khaziev, F. Kh. (Ed.) (1995). Pochvy Bashkortostana. Tom 1. Ekologo-geneticheskaya i agroproizvodstvennaya kharakteristika [Soils of Bashkortostan. Vol. 1. Ecologic-Genetic and Agroproductive Characterization]. Gilem.

Khaziev, F. Kh., & Mukatanov, A. Kh. (1985). Ratsional'no ispol'zovat' osushennyye zemli [Rational use of drained lands]. Bashknigoizdat.

Khaziev, F. Kh. (2012). Ekologiya pochv Bashkortostana [Ecology of Soils in Bashkortostan]. Gilem.

Kiryushin, V. I. (1996). Ekologicheskiye osnovy zemledeliya [Ecological bases of agriculture]. Kolos.

Komissarov, A. V. (2011). Vliyaniye orosheniya i udobreniy na urozhaynost' kostretsa bezostogo v yuzhnoy lesostepi Respubliki Bashkortostan [Effect of irrigation and fertilizers on yielding capacity of awnless brome grass in southern forest-steppe of the Republic of Bashkortostan]. Bulletin of Altay State Agricultural University, 8(82), 22–27.

Labaz, B., & Kabala, C. (2016). Human-induced development of mollic and umbric horizons in drained and farmed swampy alluvial soils. CATENA, 139, 117–126.

Lebbink, G., Dwyer, J. M., & Fensham, R. J. (2022). ‘Invasion debt’ after extensive land-use change: An example from eastern Australia. Journal of Environmental Management, 302(Part B), Article 114051.

Miao, D., & Xue, Z. (2021) The current developments and impact of land reclamation control in China. Marine Policy, 134, Article 104782.

Moreira, C. P., Bertini, S. C. B., Ferreira, A. S., & Azevedo, L. C. B. (2021). Biochemical activity and microbial biomass in wetlands (Vereda) and well-drained soils under native vegetation types in Brazilian Cerrado. Applied Soil Ecology, 160, Article 103840.

Nizamutdinov, T., Suleymanov, A., Morgun, E., Yakkonen, K., & Abakumov, E. (2022) Soils and olericultural practices in circumpolar region of Russia at present and in the past. Frontiers in Sustainable Food Systems, 6, Article 1032058.

Oliveira Filho, J. S., Santos, O. A. Q., Tavares, O. C. H., Fagundes, H. S., Diniz, Y. V. F. G., Pinto, L. A. S. R., Silva Neto, E. C., & Pereira, M. G. (2021). Changes in soil phosphorus pools induced by drainage in tropical peatlands: Evidence in monoculture and intercropping long-term systems. Soil and Tillage Research, 211, Article 105056.

OneSoil. (2017). Digital precision farming company.

Osumanu, I. K., & Ayamdoo, E. A. (2022). Has the growth of cities in Ghana anything to do with reduction in farm size and food production in peri-urban areas? A study of Bolgatanga Municipality. Land Use Policy, 112, Article 105843.

Pal, S. C., Chakrabortty, R., Roy, P., Chowdhuri, I., Das, B., Saha, A., & Shit, M. (2021). Changing climate and land use of 21st century influences soil erosion in India. Gondwana Research, 94, 164–185.

Ped’, D. A. (1975). O pokazatele zasukhi i izbytochnom uvlazhnenii [On the indicator of drought and excessive moisture]. Trudy GMTs SSSR, 156, 19–38.

Perevedentsev, Yu. P., Khabutdinov, Yu. G., Gizatullin, R. D., & Altukhova, A. V. (2017). Agrometeorologicheskiye usloviya Privolzhskogo federal'nogo okruga [Agrometeorological conditions of the Volga federal district]. Russian Journal of Applied Ecology, 1(9), 3–8.

Rashmi, I., Biswas, A. K., Kartika, K. S., & Kala, S. (2020). Phosphorus leaching through column study to evaluate P movement and vertical distribution in black, red and alluvial soils of India. Journal of the Saudi Society of Agricultural Sciences, 19(3), 241–248.

Säurich, A., Tiemeyer, B., Don, A., Fiedler, S., Bechtold, M., Amelung, W., & Freibauer, A. (2019). Drained organic soils under agriculture – The more degraded the soil the higher the specific basal respiration. Geoderma, 355, Article 113911.

Selyaninov, G. T. (1928). O sel'skokhozyaystvennoy otsenke klimata [On agricultural climate assessment]. Proceedings on agricultural meteorology, 20, 165–177.

Schwaab, J., Deb, K., Goodman, E., Kool, S., Lautenbach, S., Ryffel, A., van Strien, M. J., & Grêt-Regamey, A. (2018). Using multi-objective optimization to secure fertile soils across municipalities. Applied Geography, 97, 75–84.

Shirzaditabar, F., & Heck, R. J. (2021). Characterization of soil drainage using electromagnetic induction measurement of soil magnetic susceptibility. CATENA, 207, Article 105671.

Singh, A. (2022). Judicious and optimal use of water and land resources for long-term agricultural sustainability. Resources, Conservation & Recycling Advances, 13, Article 200067.

Sofia, G., Ragazzi, F., Giandon, P., Fontana, G. D., & Tarolli, P. (2019). On the linkage between runoff generation, land drainage, soil properties, and temporal patterns of precipitation in agricultural floodplains. Advances in Water Resources, 124, 120–138.

Sokolov, A. V. (1975). Agrokhimicheskiye metody issledovaniya pochv [Agrochemical Methods of Soil Studies]. Nauka.

Suleymanov, A., Gabbasova, I., Suleymanov, R., Komissarov, M., Garipov, T., Sidorova, L., & Nazyrova, F. (2022). The retrospective monitoring of soils under conditions of climate change in the Trans-Ural region (Russia). Journal of Water and Land Development, 55(10–12), 84–90.

Suleymanov, R. R., Gizatshina, G. M., & Gabbasova, I. M. (2021). Suitability of Agrochernozem Soils for Irrigation Amelioration in the Southern Forest-Steppe Zone of the Republic of Bashkortostan. Arid Ecosystems, 11(2), 186–192.

Suleymanov, R., Yaparov, I., Saifullin, I., Vildanov, I., Shirokikh, P., Suleymanov, A., Komissarov, M., Liebelt, P., Nigmatullin, A., & Khamidullin, R. (2020). The Current State of Abandoned Lands in the Northern Forest-Steppe Zone at the Republic of Bashkortostan (Southern Ural, Russia). Spanish Journal of Soil Science, 10(1), 29–44.

Valbuena-Parralejo, N., Tuohy, P., Fenton, O., Burchill, W., Williams, M., Lanigan, G. J., & Humphreys, J. (2019). Greenhouse gas emissions from temperate permanent grassland on clay-loam soil following the installation of artificial drainage. Agriculture, Ecosystems & Environment, 269, 39–50.

van Mourik, J., & Ligtendag, W. (2015). Relicts of a peat cover in the Westerkoggepolder (West Friesland, North-Holland, The Netherlands): The genesis of an eluvial clay soil. CATENA, 132, 105–113.

Vogelsang, V., Kaiser, K., Wagner, F. E., Jahn, R., & Fiedler, S. (2016). Transformation of clay-sized minerals in soils exposed to prolonged regular alternation of redox conditions. Geoderma, 278, 40–48.

Wang, Y., Paul, S. M., Jocher, M., Espic, C., Alewell, C., Szidat, S., & Leifeld, J. (2021). Soil carbon loss from drained agricultural peatland after coverage with mineral soil. Science of the Total Environment, 800, Article 149498.

Yin, R., Kardol, P., Thakur, M. P., Gruss, I., Wu, G.-L., Eisenhauer, N., & Schädler, M. (2020). Soil functional biodiversity and biological quality under threat: Intensive land use outweighs climate change. Soil Biology and Biochemistry, 147, Article 107847.




How to Cite

Suleymanov, R., Kamalova, R., Suleymanov, A., Adelmurzina, I., Nigmatullin, A., Khamidullin, R., Bakieva, E., & Yurkevich, M. (2023). PEDO-CLIMATIC CHANGES OF DRAINED FLOODPLAIN SOILS WITHIN THE FOREST-STEPPE ZONE OF THE REPUBLIC OF BASHKORTOSTAN (RUSSIA). Journal of the Geographical Institute “Jovan Cvijić” SASA, 73(3), 295–309.