ASSESSING URBAN GROWTH IN GREATER SURABAYA USING GOOGLE EARTH ENGINE: AN EVALUATION OF BUILT-UP AREA EXPANSION IN INDONESIAN SECONDARY CITIES
DOI:
https://doi.org/10.2298/IJGI230608004PKeywords:
urbanization, built-up expansion, secondary city, GEE catalog, Greater SurabayaAbstract
Urbanization in Indonesia's cities is increasing, leading to various impacts, including negative consequences due to insufficient investment in local public infrastructure. Urbanization assessment primarily relies on examining changes in built-up areas over the past decade. These changes serve as an indicator that can be effectively derived from remote sensing data. In our study, we applied remote sensing data from the Google Earth Engine (GEE) catalog to delve into the urbanization dynamics within Greater Surabaya area, Indonesia. We employed satellite imagery from Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 Operational Land Imager and Thermal Infrared Sensor (OLI TIRS) for 2012 and 2022. We used Support Vector Machine (SVM) classification techniques to construct precise urban expansion models. Our analysis revealed distinct urban expansion trends in Mojokerto and Sidoarjo, which contrast with the relatively stable urban development trends in northern Surabaya due to the construction of toll roads. The findings provide valuable inputs for urban management, necessitating targeted interventions and strategies to address the urbanization disparities between these two areas. It underscores the critical importance of resource allocation, infrastructure development, and urban planning initiatives, with a specific focus on Gresik, to ensure sustainable urban growth and mitigate potential challenges associated with rapid expansion.
Article metrics
References
Amani, M., Ghorbanian, A., Ahmadi, S. A., Kakooei, M., Moghimi, A., Mirmazloumi, S. M., Moghaddam, S. H. A., Mahdavi, S., Ghahremanloo, M., Parsian, S., Wu, Q., & Brisco, B. (2020). Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5326–5350. https://doi.org/10.1109/JSTARS.2020.3021052
Aryal, A., Bhatta, K. P., Adhikari, S., & Baral, H. (2023). Scrutinizing Urbanization in Kathmandu Using Google Earth Engine Together with Proximity-Based Scenario Modelling. Land, 12(1), Article 25. https://doi.org/10.3390/land12010025
Belward, A. S. & Skøien, J. O. (2015). Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites. ISPRS Journal of Photogrammetry and Remote Sensing, 103, 115–128. https://doi.org/10.1016/j.isprsjprs.2014.03.009
Dorodjatoen, A. M. H. (2009). The Emergence of Jakarta-Bandung Mega-Urban Region and Its Future Challenges. Journal of Regional and City Planning, 20(1), 15–33. https://www.researchgate.net/publication/302957191_THE_EMERGENCE_OF_JAKARTA-BANDUNG_MEGA-URBAN_REGION_AND_ITS_FUTURE_CHALLENGES
Elhamdouni, D., Arioua, A., & Karaoui, I. (2022). Monitoring urban expansion using SVM classification approach in Khenifra city (Morocco). Modeling Earth Systems and Environment, 8(1), 293–298. https://doi.org/10.1007/s40808-021-01092-w
Firman, T. (2009). The continuity and change in mega-urbanization in Indonesia: A survey of Jakarta-Bandung Region (JBR) development. Habitat International, 33(4), 327–339. https://doi.org/10.1016/j.habitatint.2008.08.005
Google Earth. (2024). Google Earth Pro 7.3.6.9750 (64-bit). https://earth.google.com/intl/earth/
Google Earth Engine. (2023). Earth Engine Data Catalog: USGS Landsat 7 and Landsat 8 Level 2, Collection 2, Tier 1 [Data Set]. https://developers.google.com/earth-engine/datasets/catalog/landsat
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
Grabowski, R. & Self, S. (2020). Industrialization and deindustrialization in Indonesia. Asia & the Pacific Policy Studies, 7(1), 95–111. https://doi.org/10.1002/app5.295
Hegazy, I. R. & Kaloop, M. R. (2015). Monitoring urban growth and land use change detection with GIS and remote sensing techniques in Daqahlia governorate Egypt. International Journal of Sustainable Built Environment, 4, 117–124. https://doi.org/10.1016/j.ijsbe.2015.02.005
Jones, G. W. (2016). Migration and Urbanization in China, India and Indonesia: an Overview. In C. Guilmoto & G. Jones (Eds), Contemporary Demographic Transformations in China, India and Indonesia (pp. 271–276). Springer. https://doi.org/10.1007/978-3-319-24783-0_17
K, D. & Angadi, D. P. (2021). Urban expansion quantification from remote sensing data for sustainable land-use planning in Mangaluru, India. Remote Sensing Applications: Society and Environment, 23, Article 100602. https://doi.org/10.1016/j.rsase.2021.100602
Kapucu, N., Ge ‘Gurt,’ Y., Martín, Y., & Williamson, Z. (2021). Urban resilience for building a sustainable and safe environment. Urban Governance, 1(1), 10–16. https://doi.org/10.1016/j.ugj.2021.09.001
Katherina, L. K. & Indraprahasta, G. S. (2019). Urbanization Pattern in Indonesia’s Secondary Cities: Greater Surabaya and Its Path toward a Megacity. IOP Conference Series: Earth and Environmental Science, 338(1), Article 012018. https://doi.org/10.1088/1755-1315/338/1/012018
Kim, K., Mungsunti, A., Sumner, A., & Yusuf, A. (2020). Structural Transformation and Inclusive Growth. Kuznets’ ‘developer’s dilemma’ in Indonesia. (WIDER Working Paper 2020/31). UNU-WIDER. https://doi.org/10.35188/UNU-WIDER/2020/788-0
Kuller, M., Farrelly, M., Marthanty, D. R., Deletic, A., & Bach, P. M. (2022). Planning support systems for strategic implementation of nature-based solutions in the global south: Current role and future potential in Indonesia. Cities, 126, Article 103693. https://doi.org/10.1016/j.cities.2022.103693
Lewis, B. D. (2014). Urbanization and Economic Growth in Indonesia: Good News, Bad News and (Possible) Local Government Mitigation. Regional Studies, 48(1), 192–207. https://doi.org/10.1080/00343404.2012.748980
Mardiansjah, F. H., Rahayu, P., & Rukmana, D. (2021). New Patterns of Urbanization in Indonesia: Emergence of Non-statutory Towns and New Extended Urban Regions. Environment and Urbanization ASIA, 12(1), 11–26. https://doi.org/10.1177/0975425321990384
Pamungkas, A., Rini, E. F., & Cahyo, P. N. (2016). Instruments for Development Controls in Gerbangkertosusila. Journal of Regional and City Planning, 27(3), 236–250. https://doi.org/10.5614/jrcp.2016.27.3.5
Prasodjo, I. (2018). Dampak urbanisasi bagi pembangunan manusia 2010-2016 Studi kasus: Jakarta, Surabaya, Medan [The Impact of Urbanization on Human Development 2010-2016 Case Study: Jakarta, Surabaya, and Medan]. Jurnal Ekonomi, 23(3), 305–318. https://doi.org/10.24912/je.v23i3.415
Razaque, A., Ben Haj Frej, M., Almi’ani, M., Alotaibi, M., & Alotaibi, B. (2021). Improved Support Vector Machine Enabled Radial Basis Function and Linear Variants for Remote Sensing Image Classification. Sensors, 21(13), Article 4431. https://doi.org/10.3390/s21134431
Rijal, S. S., Pham, T. D., Noer’Aulia, S., Putera, M. I., & Saintilan, N. (2023). Mapping Mangrove Above-Ground Carbon Using Multi-Source Remote Sensing Data and Machine Learning Approach in Loh Buaya, Komodo National Park, Indonesia. Forests, 14(1), Article 94. https://doi.org/10.3390/f14010094
Roy, D. P., Kovalskyy, V., Zhang, H. K., Vermote, E. F., Yan, L., Kumar, S. S., & Egorov, A. (2016). Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sensing of Environment, 185, 57–70. https://doi.org/10.1016/j.rse.2015.12.024
Rustiadi, E., Pravitasari, A. E., Setiawan, Y., Mulya, S. P., Pribadi, D. O., & Tsutsumida, N. (2021). Impact of continuous Jakarta megacity urban expansion on the formation of the Jakarta-Bandung conurbation over the rice farm regions. Cities, 111, Article 103000. https://doi.org/10.1016/j.cities.2020.103000
Santoso, E. B., Aulia, B. U., & Desiana, T. A. (2022). Ecological Footprint Scenario Based on Dynamic System Model in Gerbangkertosusila Region. International Review for Spatial Planning and Sustainable Development, 10(1), 99–116. https://doi.org/10.14246/irspsd.10.1_99
Shetty, A., Umesh, P., & Shetty, A. (2022). An exploratory analysis of urbanization effects on climatic variables: a study using Google Earth Engine. Modeling Earth Systems and Environment, 8, 1363–1378. https://doi.org/10.1007/s40808-021-01157-w
Stehman, S. V. & Foody, G. M. (2019). Key issues in rigorous accuracy assessment of land cover products. Remote Sensing Environment, 231, Article 111199. https://doi.org/10.1016/j.rse.2019.05.018
Taubenböck, H., Esch, T., Felbier, A., Wiesner, M., Roth, A., & Dech, S. (2012). Monitoring urbanization in mega cities from space. Remote Sensing of Environment, 117, 162–176. https://doi.org/10.1016/j.rse.2011.09.015
Wicaksono, P. & Lazuardi, W. (2018). Assessment of PlanetScope images for benthic habitat and seagrass species mapping in a complex optically shallow water environment. International Journal of Remote Sensing, 39(17), 5739–5765. https://doi.org/10.1080/01431161.2018.1506951
Wilonoyudho, S., Rijanta, R., Keban, Y. T., & Setiawan, B. (2017). Urbanization and regional imbalances in Indonesia. Indonesian Journal of Geography, 49(2), 125–132. https://doi.org/10.22146/ijg.13039
Zeng, X., Yu, Y., Yang, S., Lv, Y., & Sarker, M. N. (2022). Urban Resilience for Urban Sustainability: Concepts, Dimensions, and Perspectives. Sustainability, 14(5), Article 2481. https://doi.org/10.3390/su14052481
Zurqani, H. A., Post, C. J., Mikhailova, E. A., & Allen, J. S. (2019). Mapping Urbanization Trends in a Forested Landscape Using Google Earth Engine. Remote Sensing in Earth Systems Sciences, 2, 173–182. https://doi.org/10.1007/s41976-019-00020-y
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of the Geographical Institute “Jovan Cvijić” SASA
This work is licensed under a Creative Commons Attribution 4.0 International License.