URBAN FLOODS MANAGEMENT USING AHP AND FMEA METHODS—CASE STUDY OF BEJAIA, ALGERIA

Authors

  • Noredine Azoune University Abderrahmane Mira of Bejaia, Targa Ouzemour Campus, Faculty of Technology, Hydraulic Department, Bejaia
  • Marzouk Cherrared University of Sciences and Technology Houari Boumediene (USTHB), Faculty of Civil Engineering, Civil Engineering Department, Algiers

DOI:

https://doi.org/10.2298/IJGI2203257A

Keywords:

urban floods, Stormwater drainage systems, multicriteria approach, AHP & FMEA, overflow points

Abstract

This study aims to help the management of the Stormwater Drainage System (SDS) of Bejaia City to manage urban flood problems, i.e., to provide them with tools for a better organization of information on SDS combined with a better optimization of its interventions on the network. Our study is based on a multicriteria analysis of the “SDS–inundation–Impact” system. We used a multicriteria approach and classified the overflow points called Black Points (BPs) using two methods: Analytic Hierarchy Process (AHP) and Failure Mode, Effect and criticality Analysis (FMEA). The criteria and the evaluation scale were defined on the basis of past observations, expert opinions, and feedback experience. The map of the past flooded areas was made and used to calibrate the two models. We mapped the BPs according to intervention priorities (one to four). The outcomes from both models are greatly comparable to the results of the impact assessment of past floods. The proposed approach can also reduce flood risks by integrating some of influencing factors (causing floodings) and the application can be adapted and implemented in other cities too. Both methods are reliable, particularly the AHP for the most overflowing BPs. They could be advantageously combined to improve decision-making.

Article metrics

References

Anvarifar, F., Voorendt, M. Z., Zevenbergen, C., & Thissen, W. (2017). An application of the Functional Resonance Analysis Method (FRAM) to risk analysis of multifunctional flood defences in the Netherlands. Reliability Engineering & System Safety, 158, 130–141. https://doi.org/10.1016/j.ress.2016.10.004

Ayari, K., Djebbi, M., & Chakroun, H. (2016). Flood Risk Mapping of The City of El Bab Medjez by the Overflow of the Medjerda. Larhyss Journal, 25, 285–307. http://larhyss.net/ojs/index.php/larhyss/article/view/400

Benbachir, M., Chenaf, D., & Cherrared, M. (2022). Fuzzy-FMECA Decision-Making Tool for Assessment and Analysis of Performance of Urban Sewerage Networks. Journal of Pipeline Systems Engineering and Practice, 13(1), Article 04021078. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000585

Benbachir, M., Cherrared, M., & Chenaf, D. (2020). Managing sewerage networks using both failure modes, effects and criticality analysis (FMECA) and analytic hierarchy process (AHP) methods. Canadian Journal of Civil Engineering, 48(12), 1683–1693. https://doi.org/10.1139/cjce-2020-0287

Benzerra, A., Cherrared, M., Chocat, B., Cherqui, F., & Zekiouk, T. (2012). Decision support for sustainable urban drainage system management: A case study of Jijel, Algeria. Journal of Environmental Management, 101, 46–53. https://doi.org/10.1016/j.jenvman.2012.01.027

Boulomytis, V. T. G., Zuffo, A. C., & Imteaz, M. A. (2019). Detection of flood influence criteria in ungauged basins on a combined Delphi-AHP approach. Operations Research Perspectives, 6, Article 100116. https://doi.org/10.1016/j.orp.2019.100116

Bouyssou, D., Dubois, D., Pirlot, M., & Prade, H. (2006). Concepts et Méthodes pour l’Aide à la Décision [Concepts and Methods for Decision Support]. Collective work in the IC2 Information, Command, Communication series. Hermes Science Publishing House.

Bruwier, M., Maravat, C., Mustafa, A., Teller, J., Pirotton, M., Erpicum, S., Archambeau, P., & Dewals, B. (2020). Influence of urban forms on surface flow in urban pluvial flooding. Journal of Hydrology, 582, Article 124493. https://doi.org/10.1016/j.jhydrol.2019.124493

Caradot, N., Granger, D., Chapgier, J., Cherqui, F., & Chocat, B. (2011). Urban flood risk assessment using sewer flooding databases. Water Science & Technology, 64(4), 832–840. https://doi.org/10.2166/wst.2011.611

Chang, C.-W., Wu, C.-R., Lin, C.-T., & Chen, H.-C. (2007). An application of AHP and sensitivity analysis to select the best slicing machine. Computer Science and Industrial Engineering, 52(2), 296–307. https://doi.org/10.1016/j.cie.2006.11.006

Cherrared, M. (2016). Multi criteria management of sewerage system: analysis of the failures and the criticality of structures. In R. Komurlu, A. P. Gurgun, A. Singh, & S. Yazdani (Eds.), Interaction between Theory and Practice in Civil Engineering and Construction (pp. 661–666). ISEC Press. https://www.isec-society.org/ISEC_PRESS/EURO_MED_SEC_01/pdf/FAM-2_v2_108.pdf

Dyadem Press. (2003). Guidelines for Failure Mode and Effects Analysis for Automotive, Aerospace and General Manufacturing Industries. CRC Press. https://doi.org/10.1201/9780203009680

Eini, M., Kaboli, H. S., Rashidian, M., & Hedayat, H. (2020). Hazard and vulnerability in urban flood risk mapping: Machine learning techniques and considering the role of urban districts. International Journal of Disaster Risk Reduction, 50, Article 101687. https://doi.org/10.1016/j.ijdrr.2020.101687

Granger, D., Cherqui, F., Sourdril, A., Rousseau, J. P., Darribère, C., & Gauffre, P. (2013, June). Recurrent urban flooding hazard assessment based on operating databases. Novatech - 8th International Conference on Sustainable Technologies and Strategies for Urban Water Management in Wet Weather/8th International Conference on Planning and Technologies for Sustainable Management of Water in the City. Lyon, France. https://hal.archives-ouvertes.fr/hal-03303419

Hammond, M. J., Chen, A. S., Djordjević, S., Butler, D., & Mark, O. (2015). Urban flood impact assessment: A state-of-the-art review. Urban Water Journal, 12(1), 14–29. https://doi.org/10.1080/1573062X.2013.857421

He, J., Qiang, Y., Luo, H., Zhou, S., & Zhang, L. (2021). A stress test of urban system flooding upon extreme rainstorms in Hong Kong. Journal of Hydrology, 597, Article 125713. https://doi.org/10.1016/j.jhydrol.2020.125713

Loumi, K., & Redjem, A. (2021). Integration of GIS and Hierarchical Multi-Criteria Analysis for Mapping Flood Vulnerability. Engineering, Technology & Applied Science Research, 11(4), 7381–7385. https://doi.org/10.48084/etasr.4266

Marion, T. (2016). Development of a method for characterizing and evaluating the human risk associated with flooding in an urban environment [PhD thesis]. University of Quebec.

ONA. (2017). Études de diagnostic et de réhabilitation des réseaux d’assainissement. Lot 2 - Villes de Tizi Ouzou et Béjaia. Rapport de Mission A – sous-mission A1: Collecte des données de base [Diagnostic and rehabilitation studies of sewerage networks. Lot 2 - Cities of Tizi Ouzou and Bejaia. Mission report A - sub-mission A1: Collection of basic data]. Office National de l'Assainissement-ONA. https://ona-dz.org/

Ouma, Y. O., & Tateishi, R. (2014). Urban Flood Vulnerability and Risk Mapping Using Integrated Multi-Parametric AHP and GIS: Methodological Overview and Case Study Assessment. Water, 6(6), 1515–1545. https://doi.org/10.3390/w6061515

Philippe, F., Piton, G., Tacnet, J. M., & Gourhand, A. (2018). Aide à la décision par l'application de la méthode AHP (Analytic Hierarchy Process) à l'analyse multicritère des stratégies d'aménagement du Grand Büech à la Faurie [Decision support by applying the AHP (Analytic Hierarchy Process) method to the multicriteria analysis of development strategies from Grand Büech to La Faurie]. Sciences Eaux & Territoires, 26, 54–57. https://doi.org/10.14758/SET-REVUE.2018.26.10

Pradeep, R. M. M., & Wijesekera, N. T. S. (2020). Incorporating stakeholder concerns in Land Information Systems for urban flood management. Array, 8, Article 100037. https://doi.org/10.1016/j.array.2020.100037

Qi, M., Huang, H., Liu, L., & Chen, X. (2020). Spatial heterogeneity of controlling factors’ impact on urban pluvial flooding in Cincinnati, US. Applied Geography, 125, Article 102362. https://doi.org/10.1016/j.apgeog.2020.102362

Renard, F., & Soto, D. (2015). Une représentation du risque à l'intersection de l'aléa et de la vulnérabilité: cartographies des inondations lyonnaises [A representation of risk at the intersection of hazard and vulnerability: maps of the Lyon floods]. Geographica Helvetica, 70(4), 333–348. https://doi.org/10.5194/gh-70-333-2015

Saaty, T. L. (1980). The Analytic Hierarchy Process: Planning, Priority Setting, Resources Allocation. McGraw-Hill.

Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83–98. https://www.inderscience.com/info/inarticle.php?artid=17590

Sahely, H. R., Kennedy, C. A., & Adams, B. J. (2005). Developing sustainability criteria for urban infrastructure systems. Canadian Journal of Civil Engineering, 32(1), 72–85. https://doi.org/10.1139/l04-072

Sowmya, K., John, C. M., & Shrivasthava, N. K. (2015). Urban flood vulnerability zoning of Cochin City, southwest coast of India, using remote sensing and GIS. Natural Hazards, 75(2), 1271–1286. https://doi.org/10.1007/s11069-014-1372-4

Stamatis, D. H. (2003). Failure Mode and Effect Analysis: FMEA from Theory to Execution (2nd ed.). American Society for Quality.

Stefanidis, S., & Stathis, D. (2013). Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP). Natural Hazards, 68, 569–585. https://doi.org/10.1007/s11069-013-0639-5

Vladeanu, G. J., & Matthews, J. C. (2019). Consequence-of-failure model for risk-based asset management of wastewater pipes using AHP. Journal of Pipeline Systems Engineering and Practice, 10(2), Article 04019005. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000370

Wang, Y.-H., Hsu, Y.-C., You, G. J.-Y., Yen, C.-L., & Wang, C.-M. (2018). Flood Inundation Assessment Considering Hydrologic Conditions and Functionalities of Hydraulic Facilities. Water, 10(12), Article 1879. https://doi.org/10.3390/w10121879

Zhuo, L., & Han, D. (2020). Dawei HanAgent-based modelling and flood risk management: A compendious literature review. Journal of Hydrology, 591, Article 125600. https://doi.org/10.1016/j.jhydrol.2020.125600

Downloads

Published

2022-12-20

How to Cite

Azoune, N., & Cherrared, M. (2022). URBAN FLOODS MANAGEMENT USING AHP AND FMEA METHODS—CASE STUDY OF BEJAIA, ALGERIA. Journal of the Geographical Institute “Jovan Cvijić” SASA, 72(3), 257–271. https://doi.org/10.2298/IJGI2203257A