TEMPERATURE ALTITUDE AMPLIFICATION AS A FOOTPRINT OF A POSSIBLE ANTHROPOGENIC IMPACT ON THE CLIMATE OF AUSTRALIA
DOI:
https://doi.org/10.2298/IJGI1503297BKeywords:
Australia, temperature, trend, temperature altitude amplification, TLT, TMTAbstract
In the conditions of dominant influence of anthropogenic greenhouse effect and according to simulation models, a more intensive temperature increase in upper-air layers of troposphere than in lower-air layers should be expected. In order to check this, the difference between temperature trends in the middle and lower troposphere over the Australian continent has been analyzed. Satellite data UAHMSU for lower troposphere (TLT) and middle troposphere (ТМТ), for the 1979–2014 period have been used in the study. Estimates have been done on seasonal and annual value, and the results obtained indicate that there is a trend of temperature increase, but not altitude amplification over Australia. Reducing the time series for a year from the beginning (1980–2014, 1981–2014…), a comparative analysis between corresponding time series for each season, i.e., each year, showed that from 140 mutual comparisons, altitude amplification does not exist in 130, i.e., in 93% of cases. Moreover, in sub-periods of 1996 (1997–2014, 1998– 2014…), we can not even talk about warming in most cases because the trend of temperature is negative.
Article metrics
References
Аbdusаmаtоv, H. I. (2009). Solntse diktuet klimat Zemlyi (Солнце диктует климат Земли). Sаnkt-Pеtеrburg: SPb Lоgоs.
Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein-Tank, A. M. G., Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F., Tagipour, A., Rupa Kumar, K., Revadekar, J., Griffiths, G., Vincent, L., Stephenson, D. B., Burn, J., Aguilar, E., Brunet, M., Taylor, M., New, M., Zhai, P., Rusticucci, M., & Vazquez-Aguirre, J.L. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research Atmospheres, 111(5), D05109. doi:10.1029/2005JD006290.
Braganza, K., Karoly, D. J., Hirst, A. C., Stott, P., Stouffer, R. J. & Tett S. F. B. (2004). Simple indices of global climate variability and change: Part II: Attribution of climate change during the twentieth century. Climate Dynamics, 22(8), 823–838. doi:10.007/s00382-004-0413-1.
Burić, D., Ducić, V., & Luković, J. (2011a). Kolebanje klime u Crnoj Gori u drugoj polovini XX i početkom XXI vijeka. Podgorica: Crnogorska akademija nauka i umjetnosti.
Burić, D., Ducić, V., & Luković, J. (2011b). Mogućnosti korišćenja satelitskih merenja temperature vazduha u cilju detekcije globalnog antropogenog uticaja na klimu Crne Gore. Beogradska škola meteorologije, 4, 370–386.
Ducić, V., Sаvić, S., & Luković, Ј. (2008). Contemporary temperature changes at the Ground Surface and in the Troposphere Over Vojvodina, Serbia. Geographica Pannonica, 12(2), 56– 61.
Ducić, V., Milovanović, M., Stanojević, G., Milenković, M., & Ćurčić, N. (2015). Tropical temperature altitude amplification in the hiatus period (1998-2012), Thermal Science. http://www.doiserbia.nb.rs/img/doi/0354-9836/2015%20OnLine-First/0354-98361500103D.pdf
Fu, Q., Manabe, S., & Johanson, C.M. (2011). On the warming in the tropical upper troposphere: Models versus observations. Geophysical Research Letters, 38(15), L15794, doi:10.1029/2011GL048101.
IPCC (2013). Climate change 2013. The physical science basis. Working Group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Intergovernmental Panel on Climate Change.
IPCC (2007). Climate Change 2007: The Scientific Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Intergovernmental Panel on Climate Change.
IPCC (2001). Climate change 2001. The scientific basis. Contribution of working Group I to the third assessment report of the intergovernmental Panel on Climate Change. Cambridge, United Kingdom, New York, NY, USA, Cambridge University Press: J.T. Houghton,Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell & C.A. Johnson (Eds.)
Lindzen, R., & Rondanelli, R. (2007). Climate Sensitivity and Observed Negative Feedbacks, Program in Atmospheres, Oceans and Climate [PDF Document]. Retrieved from http://www.google.rs/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0ahUKEwjus6TL2LbJAhUFjCwKHfj7B1gQFgglMAE&url=http%3A%2F%2Fwww.boatdesign.net%2Fforums%2Fattachments%2Fall-things-boats-and-boating%2F29801d1236233094-what-do-wethink-about-climate-change-iriseffect.pdf&usg=AFQjCNEbZD7nKiOtp6_cM3Kj_4Z3L0zGIA&bvm=bv.108194040,d.bGg
Mears, C. A. & Wentz, F. J. (2009). Construction of the RSS V3.2 Lower Tropospheric Dataset From the MSU and AMSU Microwave Sounders. Journal of Atmospheric and Oceanic Technology, 26(8), 1493–1509.
Mondal, A., Kundu, S., & Mukhopadhyay, A. (2012). Rainfall trend analysis by Mann-Kendall test: A case study of norh-eastern part of cuttack distrct, Orissa. International Journal of Geology, Earth and Environmental Sciences, 2(1), 70–78.
Olofintoye, O.O., & Sule, B.F. (2010). Impact of global warming on the rainfall and temperature in the Niger Delta of Nigeria. Journal Research Information in Civil Engineering, 7(2), 33–48.
Salmi, T., Määttä, A., Anttila, P., Ruoho-Airola, T., & Amnell, T. (2002). Detecting trends of annual values of atmospheric pollutants by the Mann-Kendall test and Sen’s slope estimates — the Excel template application MAKESENS. Helsinki: Finnish Meteorological Institute Publications on Air Quality, 31, 1-35.
Šumenjak, K, & Šuster, V. (2011). Parametrični in neparametrični pristopi za odkrivanje trenda v časovnih vrstah. Acta agriculturae Slovenica, 97(3), 305–312.
http://www.metoffice.gov.uk/research/news/recent-pause-in-warming
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Geographical Institute “Jovan Cvijić” SASA (Serbian Academy of Sciences and Arts)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.