AT-SITE HYDROLOGICAL DROUGHT ANALYSIS: CASE STUDY OF VELIKA MORAVA RIVER AT LJUBIČEVSKI MOST (SERBIA)

Authors

  • Marko Urošev Geographical Institute “Jovan Cvijić” SASA, Belgrade
  • Dragan Dolinaj Faculty of Sciences, University of Novi Sad, Novi Sad
  • Dragoljub Štrbac Geographical Institute “Jovan Cvijić” SASA, Belgrade

DOI:

https://doi.org/10.2298/IJGI1602203U

Keywords:

hydrological drought, method of threshold level, partial duration series, L-moments, the Velika Morava River

Abstract

At-site frequency analysis of hydrological droughts is presented in this paper, in the example of the hydrological station Ljubičevski Most on the Velika Morava River, which represents the outlet of the entire Velika Morava basin, covering 42% of the Republic of Serbia. It is the first time that for the Velika Morava basin, and Serbia, theoretical distributions of deficit and duration of hydrological droughts are chosen according to best fit to empirical data, and not according to chosen in advance distributions, which has been the case until now. Also, for the first time in Serbia the method of L-moments was used for parameter estimation of distributions for extreme value modeling of hydrological drought characteristics. These improvements of existing method should contribute to better estimation of hydrological drought of large return period. The hydrological droughts were selected by threshold level method using daily data for the period 1960–2014, and their characteristics, deficits and durations of droughts were analyzed by method of partial duration series (peak over threshold). The results of calculations indicate that the best fit with the empirical data of deficit volumes has the model with binomial distribution of number of drought occurrences and Weibull distribution of exceedance magnitudes (B+W), and with drought durations model with binomial distribution of number of drought occurrences and exponential distribution of exceedance magnitudes (B+E). Based on the chosen distribution it is possible to calculate exceedance probabilities, i.e. return periods of deficit volumes and durations of largest observed droughts, like the 1993 drought, or to estimate 10-, 20-, 50- and 100-year droughts.

Article metrics

References

Fleig, A. K., Tallaksen, L. M., Hisdal, H., & Demuth, S. (2006). A global evaluation of streamflow drought characteristics. Hydrology and Earth System Science, 10(4), 535–552.

Hisdal, H. & Tallaksen, L.M. (Eds.) (2000). Drought event definition, ARIDE Technical Report No. 6. Norway: University of Oslo.

Hosking, J. R. (1990). L-Moments: analysis and еstimation of distributions using linear combinations of order statistics. Journal of the Royal Statistical Society. Series B (Methodological), 52(1), 105–124.

Hosking, J. R., & Wallis, J. R. (1997). Regional frequency analysis: an approach based on Lmoments. Cambridge, UK: Cambridge University Press.

Lloyd-Hughes B. (2014). The impracticality of a universal drought definition. Theortical and Applied Climatology, 117, 607–611

Madsen, H., Rasmussen, P. F., & Rosbjerg, D. (1997). Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events. 1. At-site modeling. Water Resources Research , 33(4), 747–757.

Mishra, K., & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391, 202–216.

Plavšić, J. (2006). Neizvesnosti u analizi velikih voda metodom parcijalnih serija. Vodoprivred, 38(219–221), 41–50.

Plavšić, J., & Todorović, A. (2015). Stohastička hidrologija. Pregled teorije uz vežbe. Beograd: Građevinski fakultet, Univerzitet u Beogradu.

Prohaska, S. J. (2003). Hidrologija I deo. Beograd: Rudarsko-geološki fakultet, Institut za vodoprivredu “Jaroslav Černi”, Republički hidrometeorološki zavod Srbije.

Radić Z. & Mihailović V. (2006). Uporedna metoda za definisanje hidroloških suša. Vodoprivreda 38(222–224), 247–263

Salvai A., Srđević B., & Zelenhasić E. (1990). Male vode većih panonskih reka. Vodoprivreda 22(125–126), 403–417.

Stedinger, J. R., Vogel, R. M., & Foufoula-Georgiou, E. (1993). Frequency analysis of extreme events. In D. Maidment (Ed.), Handbook of hydrology (pp. 18.1–18.66). New York, NY: McGraw-Hill.

Tallaksen, L. M. & Van Lanen, H. A. J. (Eds.), (2004). Hydrological Drought — Processes and Estimation Methods for Streamflow and Groundwater. Developments in Water Sciences, 48. Amsterdam, The Netherlands; Oxford, UK: Elsevier BV.

Tallaksen, L. M., Madsen, H. & Clausen, B. (1997) On the definition and modelling of streamflow drought duration and deficit volume, Hydrological Science Journal, 42(1), 15–33

Todorović, P. (1970). On some problems involving random number of random variables. The Annals of Mathematical Statistics, 41(3), 1059-1063. doi:10.1214/aoms/1177696981

Todorović, P., & Zelenhasić, E. (1970). A stochastic model for flood analysis. Water Resources Research, 6(6), 1641-1648.WMO (2008). Manual on low-flow estimation and prediction. Operational hydrology report No. 5. WMO –No. 1029. Geneva, Switzerland.

WMO & UNESCO (2012). International glossary of hydrology. WMO-No. 385. Geneva, Switzerland.

Zelenhasić, E. & Salvai, A. (1987) A method of streamflow drought analysis. Water Resources Research, 23(1), 156–168.

Zelenhasić E. (2002). On the extreme streamflow drought analysis. Water Resources Management 16, 105–132.

Downloads

Published

2016-08-31

How to Cite

Urošev, M., Dolinaj, D., & Štrbac, D. (2016). AT-SITE HYDROLOGICAL DROUGHT ANALYSIS: CASE STUDY OF VELIKA MORAVA RIVER AT LJUBIČEVSKI MOST (SERBIA). Journal of the Geographical Institute “Jovan Cvijić” SASA, 66(2), 203–220. https://doi.org/10.2298/IJGI1602203U

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.