THE EFFECTS OF SOLAR ACTIVITY: ELECTRONS IN THE TERRESTRIAL LOWER IONOSPHERE
DOI:
https://doi.org/10.2298/IJGI1703221SKeywords:
solar activity, solar flares, terrestrial atmosphere, electron densityAbstract
Solar flare X-ray energy can cause strong enhancements of the electron density in the Earth’s atmosphere. This intense solar radiation and activity can cause sudden ionospheric disturbances (SIDs) and further create ground telecommunication interferences, blackouts as well as some natural disasters and caused considerable material damage. The focus of this contribution is on the study of these changes induced by solar X-ray flares using narrowband Very Low Frequency (VLF, 3–30 kHz) and Low Frequency (LF, 30–300 kHz) radio signal analysis. The model computation and simulation were applied to acquire the electron density enhancement induced by intense solar radiation. The obtained results confirmed the successful use of applied technique for detecting space weather phenomena such as solar explosive events as well for describing and modeling the ionospheric electron density which are important as the part of electric terrestrial-conductor environment through which external-solar wind (SW) electrons can pass and cause natural disasters on the ground like fires.
Article metrics
References
Ammann, C. M., Joos, F., Schimel, D. S., Otto-Bliesner, B. L., & Tomas, R. A. (2007). Solar influence on climate during the past millennium: Results from transient simulations with the NCAR Climate System Model. Proceedings of the National Academy of Sciences, 104(10), 3713–3718. doi: http://dx.doi.org/10.1073/pnas.0605064103
Bajčetić, J. B., Nina, A., Čadež, V. M., & Todorović, B. M. (2015). Ionospheric D-Region Temperature Relaxation and Its Influences on Radio Signal Propagation After Solar X-Flares Occurrence. Thermal Science, 19(Suppl. 2), 299–309. doi: http://dx.doi.org/10.2298/TSCI141223084B
Budden, K. G. (1961). Radio Waves in the Ionosphere: The Mathematical Theory of the Reflection of Radio Waves from Stratified Ionised Layers. Cambridge, UK: Cambridge University Press.
Davies, K. (1966). Ionospheric radio Propagation. New York: Dover Publications.
Farley, D. T., Ierkic, H. M., & Fejer, B. G. (1981). Radar interferometry: A new technique for studying plasma turbulence in the ionosphere. Journal of Geophysical Research: Space Physics, 86(A3), 1467–1472. doi: http://dx.doi.org/10.1029/JA086iA03p01467
Ferguson, J. A. (1998). Computer Programs for Assessment of Long-Wavelength Radio Communications, Version 2.0: User’s Guide and Source Files (No. TD-3030). San Diego CA: Space and Naval Warfare Systems Center. Retrieved from http://www.dtic.mil/docs/citations/ADA350375
Folkestad, K. (Ed.). (2013). Ionospheric Radio Communications. Berlin: Springer.
Garcia, H. A. (1994), Temperature and emission measure from goes soft X-ray measurements, Solar Physics, 154(2), 275–308. doi: https://doi.org/10.1007/BF00681100
Gomes, J. F. P., & Radovanović, M. (2008). Solar activity as a possible cause of large forest fires— A case study: Analysis of the Portuguese forest fires. Science of The Total Environment, 394(1), 197–205. doi: http://dx.doi.org/10.1016/j.scitotenv.2008.01.040
Haigh, J. D. (2007). The Sun and the Earth’s climate. Living Reviews in Solar Physics, 4(2). doi: https://doi.org/10.12942/lrsp-2007-2
Hoyt, D. V., & Schatten, K. H. (1997). The role of the sun in climate change. Oxford: Oxford University Press.
Ignjatović, Lj. M., Mihajlov, A. A., Srećković, V. A., & Dimitrijević, M. S. (2014). The ion-atom absorption processes as one of the factors of the influence on the sunspot opacity. Monthly Notices of the Royal Astronomical Society, 441(2), 1504–1512. doi: http://dx.doi.org/10.1093/mnras/stu638
Ilić, L., Kuzmanoski, M., Kolarž, P., Nina, A., Srećković, V., Mijić, Z., Bajčetić, J., & Andrić, M. (2017). Changes of atmospheric properties over Belgrade, observed using remote sensing and in situ methods during the partial solar eclipse of 20 March 2015, Journal of Atmospheric and Solar-Terrestrial Physics (in press). doi: https://doi.org/10.1016/j.jastp.2017.10.001
Kelley, M. C. (2009). The Earth’s Ionosphere: Plasma Physics and Electrodynamics, ser. International Geophysics. San Diego, CA: Elsevier.
Kopp, G., & Lean, J. L. (2011). A new, lower value of total solar irradiance: Evidence and climate significance. Geophysical Research Letters, 38(1). doi: https://doi.org/10.1029/2010GL045777
Marinković, B. P., Jevremović, D., Srećković, V. A., Vujčić, V., Ignjatović, L. M., Dimitrijević, M. S., & Mason, N. J. (2017). BEAMDB and MolD–databases for atomic and molecular collisional and radiative processes: Belgrade nodes of VAMDC. The European Physical Journal D, 71(6), 158. doi: https://doi.org/10.1140/epjd/e2017-70814-6
Milenković, M., Ducić, V., Babić, V., Yamashkin, A., & Govedar, Z. (2017). Forest fires in Portugal — the connection with the Atlantic Multidecadal Oscillation (AMO). Journal of the Geographical Institute “Jovan Cvijić” SASA, 67(1), 27–35. doi: https://doi.org/10.2298/IJGI1701027M
Mihajlov, A. A., Ignjatović Lj. M., Srećković V. A., & Dimitrijević, M. S. (2011). Chemiionization in Solar Photosphere: Influence on the Hydrogen Atom Excited States Population, The Astrophysical Journal Supplement Series, 193(1), doi: https://doi.org/10.1088/0067-0049/193/1/2
Mihajlov, A. A., Ignjatović, L. M., Srećković, V. A., Dimitrijević, M. S., & Metropoulos, A. (2013). The non-symmetric ion–atom radiative processes in the stellar atmospheres. Monthly Notices of the Royal Astronomical Society, 431(1), 589–599. doi: https://doi.org/10.1093/mnras/stt187
Mitra, A.P. (1974) Ionospheric Effects of Solar Flares. Dordrecht, Holland: Springer. doi: https://doi.org/10.1007/978-94-010-2231-6
Nina, A., Čadež, V. M., Srećković, V. A., & Šulić, D. M. (2011). The Influence of Solar Spectral Lines on Electron Concentration in Terrestrial Ionosphere. Baltic Astronomy, 20(4), 609–612. doi: https://doi.org/10.1515/astro-2017-0346
Nina, A., Čadež, V. M., Srećković, V. A., & Šulić, D. M. (2012a). Altitude distribution of electron concentration in ionospheric D-region in presence of time-varying solar radiation flux. Nuclear Instruments and Methods Research Section B: Beam Interactions with Materials and Atoms, 279, 110–113. doi: https://doi.org/10.1016/j.nimb.2011.10.019
Nina, A., Čadež, V. M., Šulić, D. M., Srećković, V. A., & Žigman V. (2012b). Effective electron recombination coefficient in ionospheric D-region during the relaxation regime after solar flare from February 18, 2011. Nuclear Instruments and Methods Research Section B: Beam Interactions with Materials and Atoms, 279, 106–109. doi: https://doi.org/10.1016/j.nimb.2011.10.026
Nina, A., & Čadež, V. M. (2014). Electron production by solar Ly-α line radiation in the ionospheric D-region. Advances in Space Research, 54(7), 1276–1284. doi: http://dx.doi.org/10.1016/j.asr.2013.12.042
Nina, A., Simić, S. Z., Srećković, V. A., & Popović, L. Č. (2015). Detection of short-term response of the low ionosphere on gamma ray bursts. Geophysical Research Letters, 42(19), 8250–8261. doi: http://dx.doi.org/10.1002/2015GL065726
Nina, A., Čadež, V. M., Popović, L. Č, & Srećković, V. A. (2017). Diagnostics of plasma in the ionospheric D-region: detection and study of different ionospheric disturbance types. European Physical Journal D, 71(7), Article 189. doi: http://dx.doi.org/10.1140/epjd/e2017-70747-0
Prolss, G. W., & Bird, M. K. (2004). Physics of the Earth's space environment: an introduction. Berlin: Springer.
Radovanović, M. (2010). Forest Fires in Europe from July 22–25, 2009. Archives of Biological Sciences, 62(2), 419–424. doi: http://dx.doi.org/10.2298/ABS1002419R
Radovanovic, M., & Gomes, J. F. P. (2009). Solar Activity and Forest Fires. New York, NY: Nova Science Publishers.
Radovanović, M., Gomes, J. F. P., Yamashkin, A. A., Milenković, M., & Stevančević, M. (2017). Electrons or protons: what is the cause of forest fires in western Europe on june 18, 2017? Journal of the Geographical Institute “Jovan Cvijić” SASA, 67(2), 213–218. doi: https://doi.org/10.2298/IJGI1702213R
Radovanović, M. M., Milovanović, B. M., Pavlović, M. A., Radivojević, A. R., & Stevančević, M. T. (2013). The connection between solar wind charged particles and tornadoes — case analysis. Nuclear Technology & Radiation Protection, 28(1), 52–59. doi: http://dx.doi.org/10.2298/NTRP1301052R
Rawer, K. (1993). Wave Propagation in the Ionosphere, Dordrecht: Springer. doi: http://dx.doi.org/10.1007/978-94-017-3665-7
Rind, D. (2002). The Sun’s role in climate variations. Science, 296(5568), 673–677. doi: http://dx.doi.org/10.1126/science.1069562
Schofield, R., Avallone, L. M., Kalnajs, L. E., Hertzog, A., Wohltmann, I., & Rex, M. (2015). First quasi-Lagrangian in situ measurements of Antarctic Polar springtime ozone: observed ozone loss rates from the Concordiasi long-duration balloon campaign. Atmospheric Chemistry and Physics, 15(5), 2463–2472. doi: https://doi.org/10.5194/acp-15-2463-2015
Srećković, V. A., Mihajlov, A. A., Ignjatović Lj. M., & Dimitrijević, M. S. (2014). Ion-atom radiative processes in the solar atmosphere: quiet Sun and sunspots. Advances in Space Research, 54(7), 1264–1271. doi: http://dx.doi.org/10.1016/j.asr.2013.11.017
Srećković, V. A., Ignjatović, L. M., Jevremović, D., Vujčić, V., & Dimitrijević, M. S. (2017). Radiative and Collisional Molecular Data and Virtual Laboratory Astrophysics. Atoms, 5(3), Article 31. doi: http://dx.doi.org/10.3390/atoms5030031
Svestka, Z. (2012). Solar flares (Vol. 8). Springer Science & Business Media. Retrieved from https://books.google.rs/books?hl=en&lr=7id=AtnsCAAAQBAJ&oi=fnd&pg=PP12&dq=Svestka,+Z.+%282012%29.+Solar+flares+&ots=fCnIBZhioB&sig=COS6ACVBlg7igDwmjZIg58
Vk30Q&redir_esc=y#v=onepage&q&f=false
Šulić, D. M., & Srećković, V. A. (2014). A Comparative Study of Measured Amplitude and Phase Perturbations of VLF and LF Radio Signals Induced by Solar Flares. Serbian Astronomical Journal, 188, 45–54. doi: http://dx.doi.org/10.2298/SAJ1488045S
Šulić, D. M., Srećković, V. A., & Mihajlov, A. A. (2016). A study of VLF signals variations associated with the changes of ionization level in the D-region in consequence of solar conditions. Advances in Space Research, 57(4), 1029–1043. doi: https://doi.org/10.1016/j.asr.2015.12.025
Tandberg-Hanssen, E., & Emslie, A. G. (1988). The physics of solar flares (Vol. 14). Cambridge: Cambridge University Press. Retrieved from https://books.google.rs/books?hl=en&lr=&id=wcFObnSqVVIC&oi=fnd&pg=PR10&dq=The+physics+of+solar+flares+&ots=xsdxq9kfYn&sig=WYcR22OQ6jkMuf8WQELEEPhKgOQ&r
edir_esc=y#v=onepage&q=The%20physics%20of%20solar%20flares&f=false
Todorović Drakul, M., Čadež, V. M., Bajčetić, J. B., Popović, L. Č, Blagojević, D. M., & Nina, A. (2016). Behaviour of Electron Content in the Ionospheric D-Region During Solar X-Ray Flares. Serbian Astronomical Journal, 193, 11–18. doi: http://dx.doi.org/10.2298/SAJ160404006T
Wait, J.R., Spies, K.P. (1964). Characteristics of the Earth–Ionosphere Waveguide for VLF Radio Waves, Technical Note 300. Boulder, CO: National Bureau of Standards.
Walker, D., (1965). Phase steps and amplitude fading of VLF signals at dawn and dusk. Radio Science Journal of Research NBS/USNC-URSI, 69D(11), 1435–1443. Retrieved from
http://nvlpubs.nist.gov/nistpubs/jres/69D/jresv69Dn11p1435_A1b.pdf
http://solar-center.stanford.edu/SID/AWESOME/
https://en.wikipedia.org/wiki/VLF_transmitter_DHO38
https://satdat.ngdc.noaa.gov/sem/goes/data
https://www.ngdc.noaa.gov/stp/satellite/goes/doc/GOES_XRS_readme.pdf
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Journal of the Geographical Institute “Jovan Cvijić” SASA
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.