CONSTRAINING YUKAWA GRAVITY FROM PLANETARY MOTION IN THE SOLAR SYSTEM

Authors

  • Predrag Jovanović Astronomical Observatory, Belgrade
  • Duško Borka Atomic Physics Laboratory (040), Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade
  • Vesna Borka Jovanović Atomic Physics Laboratory (040), Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade

DOI:

https://doi.org/10.2298/IJGI1903265J

Keywords:

modified theories of gravity, gravitational precession, experimental tests of gravitational theories, Solar System

Abstract

In this work we used the observed additional perihelion precession in the Solar System, obtained from the observations of planets and spacecrafts, to study the possible existence of Yukawa correction term to the Newtonian gravitational potential. Our study was motivated by previous analyses which indicated the possible discrepancies from Newtonian gravity in this form and at wide range of astrophysical scales. Yukawa gravity was introduced to cure some shortcomings of General Relativity (GR) at galactic and extragalactic scales. We demonstrated that this form of gravity can give the values for orbital precession which are comparable or even in better agreement with observations than the corresponding predictions of GR. The obtained results can be used for setting stronger constraints on variation of the gravitational constant G, as well as on the fundamental constant δ of Yukawa gravity. Moreover, Yukawa gravity could be used to improve the results for the motion of planets, other Solar System bodies, as well as spacecrafts, and as a consequence, it can help us to get more reliable predictions for natural hazards in the Solar System, such as potential impacts by near-Earth objects.

Article metrics

References

Adelberger, E. G., Gundlach, J. H., Heckel, B. R., Hoedl, S., & Schlamminger, S. (2009). Torsion balance experiments: A low-energy frontier of particle physics. Progress in Particle and Nuclear Physics, 62(1), 102–134. https://doi.org/10.1016/j.ppnp.2008.08.002

Borka Jovanović, V., Capozziello, S., Jovanović, P., & Borka, D. (2016). Recovering the fundamental plane of glaxies by f(R) gravity. Physics of the Dark Universe, 14, 73–83. https://doi.org/10.1016/j.dark.2016.10.003

Borka, D., Capozziello, S., Jovanović, P., & Borka Jovanović, V. (2016). Probing hybrid modified gravity by stellar motion around Galactic Center. Astroparticle Physics, 79, 41–48 https://doi.org/10.1016/j.astropartphys.2016.03.002

Borka, D., Jovanović, P., Borka Jovanović, V., & Zakharov, A. F. (2013). Constraining the range of Yukawa gravity interaction from S2 star orbits. Journal of Cosmology and Astroparticle Physics, 11, 050. https://doi.org/10.1088/1475-7516/2013/11/050

Borka, D., Jovanović, P., Borka Jovanović, V., & Zakharov, A. F. (2012). Constraints on R^n gravity from precession of orbits of S2-like stars. Physical Review D, 85(12), 124004. https://doi.org/10.1103/PhysRevD.85.124004

Capozziello, S., & de Laurentis, M. (2011). Extended theories of gravity. Physics Reports, 509(4–5), 167–321. https://doi.org/10.1016/j.physrep.2011.09.003

Capozziello, S., & Faraoni, V. (2011). Beyond Einstein Gravity: A Survey of Gravitational Theories for Cosmology and Astrophysics. New York, NY: Springer. https://doi.org/10.1007/978-94-007-0165-6

Capozziello, S., Borka, D., Jovanović, P., & Borka Jovanović, V. (2014). Constraining Extended Gravity Models by S2 star orbits around the Galactic Centre. Physical Review D, 90(4), 044052. https://doi.org/10.1103/PhysRevD.90.044052

Capozziello, S., Jovanović, P., Borka Jovanović, V., & Borka, D. (2017). Addressing the missing matter problem in galaxies through a new fundamental gravitational radius. Journal of Cosmology and Astroparticle Physics, 06, 044. https://doi.org/10.1088/1475-7516/2017/06/044

Chamberlin, A. B., Yeomans, D. K., Chodas, P. W., Giorgini, J. D., Jacobson, R. A., Keesey, M. S., . . . Wimberly, R. N. (1997). JPL Solar System Dynamics WWW Site [Abstract]. Bulletin of the American Astronomical Society, 29, 1014. Retrieved from https://ui.adsabs.harvard.edu/abs/1997DPS....29.2106C/abstract

Clifton, T., Ferreira, P. G., Padilla, A., & Skordis, C. (2012). Modified gravity and cosmology. Physics Reports, 513(1–3), 1–189. https://doi.org/10.1016/j.physrep.2012.01.001

DeMartini, J. V., Richardson, D. C., Barnouin, O. S., Schmerr, N. C., Plescia, J. B., Scheirich, P., & Pravec, P. (2019). Using a discrete element method to investigate seismic response and spin change of 99942 Apophis during its 2029 tidal encounter with Earth. Icarus, 328, 93–103. https://doi.org/10.1016/j.icarus.2019.03.015

Dialektopoulos, K. F., Borka, D., Capozziello, S., Borka Jovanović, V., & Jovanović, P. (2019). Constraining nonlocal gravity by S2 star orbits. Physical Review D, 99(4), 044053. https://doi.org/10.1103/PhysRevD.99.044053

Fischbach, E., & Talmadge, C. L. (1992). Six years of the fifth force. Nature, 356, 207–215. https://doi.org/10.1038/356207a0

Fischbach, E., & Talmadge, C. L. (1999). The Search for Non-Newtonian Gravity. https://doi.org/10.1023/A:1001962906141

Fischbach, E., Sudarsky, D., Szafer, A., Talmadge, C., & Aronson, S. H. (1986). Reanalysis of the Eoumltvös experiment. Physical Review Letters, 56(1), 3–6. https://doi.org/10.1103/PhysRevLett.56.3

Hoyle, C. D., Schmidt, U., Heckel, B. R., Adelberger, E. G., Gundlach, J. H., Kapner, D. J., & Swanson, H. E. (2001). Submillimeter Test of the Gravitational Inverse-Square Law: A Search for “Large” Extra Dimensions. Physical Review Letters, 86(8), 1418–1421. https://doi.org/10.1103/PhysRevLett.86.1418

Iorio, L. (2007). Constraints on the range λ of Yukawa-like modifications to the Newtonian inverse-square law of gravitation from Solar System planetary motions. Journal of High Energy Physics, 10, 041. https://doi.org/10.1088/1126-6708/2007/10/041

Pitjeva, E. V., & Pitjev, N. P. (2013). Relativistic effects and dark matter in the Solar system from observations of planets and spacecraft. Monthly Notices of the Royal Astronomical Society, 432(4), 3431–3437. https://doi.org/10.1093/mnras/stt695

Sotiriou, T. P., & Faraoni, V. (2010). f(R) theories of gravity. Reviews of Modern Physics, 82, 451. https://doi.org/10.1103/RevModPhys.82.451

Zakharov, A. F., Borka, D., Borka Jovanović, V., & Jovanović, P. (2014). Constraints on R^n gravity from precession of orbits of S2-like stars: case of bulk distribution of mass. Advances in Space Research, 54(6), 1108–1112. https://doi.org/10.1016/j.asr.2014.05.027

Zakharov, A. F., Jovanović, P., Borka, D., & Borka Jovanović, V. (2016). Constraining the range of Yukawa gravity interaction from S2 star orbits II: bounds on graviton mass. Journal of Cosmology and Astroparticle Physics, 05, 045. https://doi.org/10.1088/1475-7516/2016/05/045

Zakharov, A. F., Jovanović, P., Borka, D., & Borka Jovanović, V. (2018). Constraining the range of Yukawa gravity interaction from S2 star orbits III: improvement expectations for graviton mass bounds. Journal of Cosmology and Astroparticle Physics P., 04, 050. https://doi.org/10.1088/1475-7516/2018/04/050

Downloads

Published

2019-12-19

How to Cite

Jovanović, P. ., Borka, D. ., & Borka Jovanović, V. . (2019). CONSTRAINING YUKAWA GRAVITY FROM PLANETARY MOTION IN THE SOLAR SYSTEM. Journal of the Geographical Institute “Jovan Cvijić” SASA, 69(3), 265–269. https://doi.org/10.2298/IJGI1903265J

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.