RESPONSES OF THE IONOSPHERIC D-REGION TO PERIODIC AND TRANSIENT VARIATIONS OF THE IONIZING SOLAR Lyα RADIATION
DOI:
https://doi.org/10.2298/IJGI1703235NKeywords:
Lyα line, solar radiation, ionospheric D-region, VLF signal propagationAbstract
Solar radiation has the most important role in periodical variation of terrestrial atmospheric properties. Under unperturbed ionospheric conditions, the solar Lyα line has a dominant influence on ionization processes in the lowest ionospheric layer, the so called D-region. In this paper, we present periodical and transient variations in influences of the Lyα radiation on this ionospheric layer. In the case of periodical lower ionospheric changes we consider diurnal, seasonal and solar cycle variations and show analysis of acoustic and gravity waves induced by solar terminator. Influences of solar flares and eclipses on this atmospheric layer are analyzed as examples of sudden ionospheric disturbances. For decades, Very Low Frequency radio signals (3 – 30 kHz) are successfully used as a tool for monitoring of changes in the lower ionosphere, based on radio wave propagation through Earth-ionosphere waveguide along given trajectories and registration of their physical parameters (amplitude and phase delay). For the analysis conducted in this paper, we used records of the VLF DHO signal, emitted on 23.4 kHz frequency from transmitter in Germany and received in Serbia.
Article metrics
References
Afraimovich, E. L. (2008). First GPS-TEC Evidence of Wave Structure Excited by Solar Terminator Moving. Earth Planets Space, 60, 895–900. doi: https://doi.org/10.1186/BF03352843
Aikin, A. C. (1969). The Ion Pair Production Function of the Lower Ionosphere. Greenbelt, MD: National Aeronautics and Space Administration, Goddard Space Flight Center. Retrieved from https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19700009640.pdf
Aikin, A. C., Kane, J. A., & Troim, J. (1964). Some Results of Rocket Experiments in the Quiet D Region. Journal of Geophysical Research, 69(21), 4621–4628, doi: https://doi.org/10.1029/JZ069i021p04621.
Bajčetić, J. B., Nina, A., Čadež, V. M., & Todorović, B. M. (2015). Ionospheric D-Region Temperature Relaxation and Its Influences on Radio Signal Propagation After Solar X-Flares Occurrence. Thermal Science, 19(Suppl. 2), 299–309. doi: http://dx.doi.org/10.2298/TSCI141223084B
Barabash, V., Osepian, A., Dalin, P., & Kirkwood, S. (2012). Electron density profiles in the quiet lower ionosphere based on the results of modeling and experimental data. Annales Geophysicae, 30, 1345–1360. doi: https://doi.org/10.5194/angeo-30-1345-2012
Clilverd, M. A., Thomson, N. R., & Rodger, C. J. (1999). Sunrise effects on VLF signals propagating over a long north-south path. Radio Science, 34(4), 939–948. doi: https://doi.org/10.1029/1999RS900052
Correia, E., Kaufmann, P., Raulin, J.-P., Bertoni, F., & Gavilan, H. R. (2011). Analysis of daytime ionosphere behavior between 2004 and 2008 in Antarctica. Journal of Atmospheric and Solar-Terrestrial Physics, 73(16), 2272–2278. doi: https://doi.org/10.1016/j.jastp.2011.06.008
De Keyser, J. & Čadež, V. (2001a). Excitation of low-frequency fluctuations at the magnetopause by intermittent broadband magnetosheath waves. Journal of Geophysical Research, 106(A12), 29467–29478. doi: https://doi.org/10.1029/2001JA900078
De Keyser, J. & Čadež, V. (2001b). Transient development of magnetohydrodynamic wave mode conversion. Journal of Geophysical Research, 106(A8), 15609–15620. doi: https://doi.org/10.1029/2001JA900045
Fröhlich, C. (2009). Evidence of a long-term trend in total solar irradiance. Astronomy and Astrophysics, 501(3), L27-L30. doi: https://doi.org/10.1051/0004-6361/200912318
Gupta, S. (1998). Diurnal and seasonal variation of D-region electron density at low latitude. Advances in Space Research, Proceedings of the C0.1 Symposium of COSPAR Scientific Commission C, 21(6), 875–881. doi: https://doi.org/10.1016/S0273-1177(97)00646-7
Hernández-Pajares, M., Juan, J. M., & Sanz, J. (2006). Medium-scale traveling ionospheric disturbances affecting GPS measurements: Spatial and temporal analysis. Journal of Geophysical Research — Space Physics, 111(A7), A07S11. doi: https://doi.org/10.1029/2005JA011474
Ignjatović, Lj. M., Mihajlov, A. A., Srećković, V. A., & Dimitrijević, M. S. (2014). The ion-atom absorption processes as one of the factors of the influence on the sunspot opacity. Monthly Notices of the Royal Astronomical Society, 441(2), 1504–1512. doi: http://dx.doi.org/10.1093/mnras/stu638
Ilić, L., Kuzmanoski, M., Kolarž, P., Nina, A., Srećković, V., Mijić, Z., Bajčetić, J., & Andrić, M. (2017). Changes of atmospheric properties over Belgrade, observed using remote sensing and in situ methods during the partial solar eclipse of 20 March 2015. Journal of Atmospheric and Solar-Terrestrial Physics (in press). doi: https://doi.org/10.1016/j.jastp.2017.10.001
Inan, U. S., Cummer, S. A., & Marshall, R. A. (2010). A survey of ELF and VLF research on lightning-ionosphere interactions and causative discharges. Journal of Geophysical Research — Space Physics, 115(A6), A00E36. doi: https://doi.org/10.1029/2009JA014775
Kockarts, G. (2002). Aeronomy, a 20th Century emergent science: the role of solar Lyman series. Annales Geophysicae, 20, 585–598. doi: https://doi.org/10.5194/angeo-20-585-2002
Kolarski, A., & Grubor, D. (2014). Sensing the Earth's low ionosphere during solar flares using VLF signals and goes solar X-ray data. Advances in space research, 53(11), 1595–1602. doi: https://doi.org/10.1016/j.asr.2014.02.022
Kolarski, A., Grubor, D., & Šulić, D. (2011). Diagnostics of the Solar X-Flare Impact on Lower Ionosphere through Seasons Based on VLF-NAA Signal Recordings. Baltic Astronomy, 20(4), 591–595. doi: https://doi.org/10.1515/astro-2017-0342
Kumar, S., NaitAmor, S., Chanrion, O., & Neubert, T. (2017). Perturbations to the lower ionosphere by tropical cyclone Evan in the South Pacific Region. Journal of Geophysical Research, 122(8), 8720–8732. doi: https://doi.org/10.1002/2017JA024023
Malinović-Milicević, S., Radovanović, M. M., Stanojević, G., & Milovanović, B. (2015). Recent changes in Serbian climate extreme indices from 1961 to 2010. Theoretical and Applied Climatology, 124(3/4), 1089–1098. doi: http://dx.doi.org/10.1007/s00704-015-1491-1
Mihajlov, A. A., Ignjatović, L. M., Srećković, V. A., Dimitrijević, M. S., & Metropoulos, A. (2013). The non-symmetric ion–atom radiative processes in the stellar atmospheres. Monthly Notices of the Royal Astronomical Society, 431(1), 589–599. doi: https://doi.org/10.1093/mnras/stt187
Mihajlović J., Ducić V., & Burić D. (2016). Tornadic waterspout event in Split (Croatia) — Analysis of meteorological environment. Journal of the Geographical institute “Jovan Cvijić” SASA, 66(2), 185–202. doi: http://dx.doi.org/10.2298/IJGI1602185M
Mihajlović J. (2017) Analysis of a non-supercell tornadno event in Sombor, on July 10, 2014. Journal of the Geographical institute “Jovan Cvijić” SASA, 67(2), 115–133. doi: https://doi.org/10.2298/IJGI1702115M
Milanović Pešić A. & Milovanović B. (2015). Thermic regime and air temperature trends in Šumadija region (Serbia). Journal of the Geographical institute “Jovan Cvijić” SASA, 66(1), 19–34. doi: http://dx.doi.org/10.2298/IJGI1601019M
Nicolet, M. & Aikin, A. C. (1960). The Formation of the D Region of the Ionosphere. Journal of Geophysical Research, 65(5), 1469–1483. doi: http://dx.doi.org/10.1029/JZ065i005p01469
Nikolić, J. L., Radovanović, M. M., & Milijašević, D. P. (2010). An astrophysical analysis of weather based on the solar wind parameters. Nuclear Technology and Radiation Protection, 25(3), 171–178. doi: http://dx.doi.org/10.2298/NTRP1003171N
Nina, A., Čadež, V. M., Srećković, V. A., & Šulić, D. M. (2011). The Influence of Solar Spectral Lines on Electron Concentration in Terrestrial Ionosphere. Baltic Astronomy, 20(4), 609–612. doi: https://doi.org/10.1515/astro-2017-0346
Nina, A., Čadež, V. M., Šulić, D. M., Srećković, V. A., & Žigman V. (2012). Effective electron recombination coefficient in ionospheric D-region during the relaxation regime after solar flare from February 18, 2011. Nuclear Instruments and Methods Research Section B: Beam Interactions with Materials and Atoms, 279, 106–109. doi: https://doi.org/10.1016/j.nimb.2011.10.026
Nina, A., & Čadež, V. M. (2013). Detection of acoustic-gravity waves in lower ionosphere by VLF radio waves. Geophysical Research Letters, 40(18), 4803-4807. doi: http://dx.doi.org/10.1002/grl.50931
Nina, A., & Čadež, V. M. (2014). Electron production by solar Ly-α line radiation in the ionospheric D-region. Advances in Space Research, 54(7), 1276–1284. doi: http://dx.doi.org/10.1016/j.asr.2013.12.042
Nina, A., Simić, S. Z., Srećković, V. A., & Popović, L. Č. (2015). Detection of short-term response of the low ionosphere on gamma ray bursts. Geophysical Research Letters, 42(19), 8250–8261. doi: http://dx.doi.org/10.1002/2015GL065726
Nina, A., Čadež, V. M., Popović, L. Č, & Srećković, V. A. (2017). Diagnostics of plasma in the ionospheric D-region: detection and study of different ionospheric disturbance types. European Physical Journal D, 71(7), Article 189. doi: http://dx.doi.org/10.1140/epjd/e2017-70747-0
Nina, A., Radovanović, M., Milovanović, B., Kovačević, A., Bajčetić, J., & Popović, L. Č. (2017). Low Ionospheric Reactions on Tropical Depressions prior Hurricanes. Advances in Space Research, 60(8), 1866–1877. doi: http://dx.doi.org/10.1016/j.asr.2017.05.024
Pearce, J. B. (1969). Rocket measurement of nitric oxide between 60 and 96 kilometers. Journal of Geophysical Research, 74, 853–861, doi: https://doi.org/10.1029/JA074i003p00853
Raulin, J.-P., Trottet, G., Kretzschmar, M., Macotela, E. L., Pacini, A., Bertoni, F. C. P., & Dammasch, I. E. (2013). Response of the low ionosphere to X-ray and Lyman-α solar flare emissions, Journal of Geophysical Research — Space Physics, 118(1), 570–575. doi: https://doi.org/10.1029/2012JA017916
Singh, A. K., Singh, A. K., Singh, R., & Singh, R. P. (2014). Solar flare induced D-region ionospheric perturbations evaluated from VLF measurements. Astrophysics and Space Science, 350(1), 1–9, doi: https://doi.org/10.1007/s10509-013-1699-4
Šulić, D. M., & Srećković, V. A. (2014). A Comparative Study of Measured Amplitude and Phase Perturbations of VLF and LF Radio Signals Induced by Solar Flares. Serbian Astronomical Journal, 188, 45–54. doi: http://dx.doi.org/10.2298/SAJ1488045S
Šulić, D. M., Srećković, V. A., & Mihajlov, A. A. (2016). A study of VLF signals variations associated with the changes of ionization level in the D-region in consequence of solar conditions. Advances in Space Research, 57(4), 1029–1043. doi: https://doi.org/10.1016/j.asr.2015.12.025
Thomson, N. R. & Clilverd, M. A. (2000). Solar cycle changes in daytime VLF subionospheric attenuation. Journal of Atmospheric and Solar-Terrestrial Physics, 62(7), 601–608. doi: https://doi.org/10.1016/S1364-6826(00)00026-2
Todorović Drakul, M., Čadež, V. M., Bajčetić, J. B., Popović, L. Č, Blagojević, D. M., & Nina, A. (2016). Behaviour of Electron Content in the Ionospheric D-Region During Solar X-Ray Flares. Serbian Astronomical Journal, 193, 11–18. doi: http://dx.doi.org/10.2298/SAJ160404006T
Vyklyuk, Y., Radovanović, M., Milovanović, B., Leko, T., Milenković, M., Milošević, Z., Milanović Pešić, A., & Jakovljević, D. (2017). Hurricane genesis modelling based on the relationship between solar activity and hurricanes. Natural Hazards, 85(2), 1043–1062. doi: https://doi.org/10.1007/s11069-016-2620-6
Woods, T. N., Tobiska, W. K., Rottman, G. J., & Worden, J. R. (2000). Improved solar Lyman alpha irradiance modeling from 1947 through 1999 based on UARS observation. Journal of Geophysical Research, 105(A12), 27195-27216. doi: https://doi.org/10.1029/2000JA000051
www.sidc.be/silso/datafiles
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Journal of the Geographical Institute “Jovan Cvijić” SASA
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.