• Dejan Vinković Science and Society Synergy Institute, Čakovec
  • Maria Gritsevich Finnish Geospatial Research Institute, Masala; University of Helsinki, Department of Physics, Helsinki; Ural Federal University, Institute of Physics and Technology, Ekaterinburg



meteors, impacts, hypervelocity, ionosphere, Solar System


Meteor science contributes greatly to the study of the Solar System and the Earth’s atmosphere. However, despite its importance and very long history, meteor science still has a lot to explore in the domain of meteor plasma microphysics and the meteor–ionosphere interaction. Meteors are actually a difficult target for high‐resolution observations, which leads to the need for more ambitious interdisciplinary observational setups and campaigns. We describe some recent developments in the physics of meteor flight and microphysics of meteor plasma and argue that meteor science should be fully integrated into the science cases of large astronomical facilities.

Article metrics


Barenblatt, G. I. (1996). Scaling, self-similarity, and intermediate asymptotics: dimensional analysis and intermediate asymptotics (Vol. 14). Cambridge, UK: Cambridge University Press.

Barnett, J. J., & Corney, M. (1985). Middle atmosphere reference model derived from satellite data. In K. Labitzke, J. J. Barnett, & B. Edwards (Eds.), Middle Atmosphere Program. Handbook for MAP: Vol. 16. Atmospheric structure and its variation in the region 20 to 120 km (pp. 47–85). Urbana, IL: University of Illinois.

Bektešević, D., Vinković, D., Rasmussen, A., & Ivezić, Ž. (2018). Linear feature detection algorithm for astronomical surveys – II. Defocusing effects on meteor tracks. Monthly Notices of the Royal Astronomical Society, 474(4), 4837–4854.

Bouquet, A., Baratoux, D., Vaubaillon, J., Gritsevich, M. I., Mimoun, D., Mousis, O., & Bouley, S. (2014). Simulation of the capabilities of an orbiter for monitoring the entry of interplanetary matter into the terrestrial atmosphere. Planetary and Space Science, 103, 238–249.

Community Coordinated Modeling Center. (n.d.). MSISE Model. Retrieved from

Dmitriev, V., Lupovka, V., & Gritsevich, M. (2015). Orbit determination based on meteor observations using numerical integration of equations of motion. Planetary and Space Science, 117, 223–235.

Gao, B., & Mathews, J. D. (2015) High-altitude meteors and meteoroid fragmentation observed at the Jicamarca Radio Observatory. Monthly Notices of the Royal Astronomical Society, 446(4), 3404–3415.

Gritsevich, M. I. (2007). Approximation of the observed motion of bolides by the analytical solution of the equations of meteor physics. Solar System Research, 41(6), 509–514.

Gritsevich, M. I. (2008a). Identification of Fireball Dynamic Parameters. Moscow University Mechanics Bulletin, 63(1), 1–5.

Gritsevich, M. I. (2008b). The Pribram, Lost City, Innisfree, and Neuschwanstein Falls: An analysis of the atmospheric trajectories. Solar System Research, 42(5), 372–390.

Gritsevich, M. I. (2008c). Validity of the photometric formula for estimating the mass of a fireball projectile. Doklady Physics, 53(2), 97–102.

Gritsevich, M. I. (2009). Determination of Parameters of Meteor Bodies Based on Flight Observational Data. Advances in Space Research, 44(3), 323–334.

Gritsevich, M. I., & Stulov, V. P. (2006). Extra-atmospheric masses of the Canadian Network bolides. Solar System Research, 40(6), 477–484.

Gritsevich, M. I., Stulov, V. P., & Turchak, L. I. (2012). Consequences for collisions of natural cosmic bodies with the Earth’s Atmosphere and Surface. Cosmic Research, 50(1), 56–64.

Gritsevich, M. I., Stulov, V. P., & Turchak, L. I. (2013). Formation of large craters on the earth as a result of impacts of natural cosmic bodies. Doklady Physics, 58(1), 37–39.

Gritsevich, M., & Koschny, D. (2011). Constraining the luminous efficiency of meteors. Icarus, 212(2), 877–884.

Gritsevich, M., Dmitriev, V., Vinnikov, V., Kuznetsova, D., Lupovka, V., Peltoniemi, J., . . . Pupyrev, Y. (2017). Constraining the pre-atmospheric parameters of large meteoroids: Košice, a case study. In J. M. TrigoRodríguez, M. Gritsevich, & H. Palme (Eds.), Assessment and Mitigation of Asteroid Impact Hazards (pp. 153–183).

Hedin, A. E. (1991). Extension of the MSIS Thermospheric Model into the middle and lower atmosphere. Journal of Geophysical Research, 96(A2), 1159–1172.

Hervig, M. E., Deaver, L. E., Bardeen, C. G., Russell III, J. M., Bailey, S. M., & Gordley, L. L. (2012). The content and composition of meteoric smoke in mesospheric ice particles from SOFIE observations. Journal of Atmospheric and Solar-Terrestrial Physics, 84–85, 1–6.

Jenniskens, P. (2001). Meteors as a delivery vehicle for organic matter to the early Earth. In B. Warmbein (Ed.), Proceedings of the Meteoroids 2001 Conference, 6–10 August 2001, Kiruna, Sweden (pp. 247–254). Noordwijk, Netherlands: ESA Publications Division.

Kartashova, A. P., Popova, O. P., Glazachev, D. O., Jenniskens, P., Emelˈyanenko, V. V., Podobnaya, E. D., & Skripnik, A. Y. (2018). Study of injuries from the Chelyabinsk airburst event. Planetary and Space Science, 160, 107–114.

Kero, J., Szasz, C., Pellinen-Wannberg, A., Wannberg, G., Westman, A., & Meisel, D. D. (2008). Three‐dimensional radar observation of a submillimeter meteoroid fragmentation. Geophysical Research Letters, 35(4), L04101.

Kohout, T., Haloda, J., Halodová, P., Meier, M. M. M., Maden, C., Busemann, H., . . . Ishchenko, A. V. (2017). Annama H chondrite—Mineralogy, physical properties, cosmic ray exposure, and parent body history. Meteoritics & Planetary Science, 52(8), 1525–1541.

Legacy Survey of Space and Time. (n.d.). Retrieved from

Li, S. J., Wang, S. J., Miao, B. K., Li, Y., Li, X. Y., Zeng, X. J., & Xia, Z. P. (2019) The density, porosity and pore morphology of fall and find ordinary chondrites. JGR Planets, 124(11), 2945–2969.

Lyytinen, E., & Gritsevich, M. (2016). Implications of the atmospheric density profile in the processing of fireball observations. Planetary and Space Science, 120, 35–42.

Maksimova, A. A., Petrova, E. V., Chukin, A. V., Karabanalov, M. S., Felner, I., Gritsevich, M., & Oshtrakh, M. I. (2020). Characterization of the matrix and fusion crust of the recent meteorite fall Ozerki L6. Meteoritics and Planetary Science, 55(1), 231–244.

Martikainen, J., Penttilä, A., Gritsevich, M., Lindqvist, H., & Muinonen, K. (2018). Spectral modeling of meteorites at UV-vis-NIR wavelengths. Journal of Quantitative Spectroscopy and Radiative Transfer, 204, 144–151.

McCrea, I., Aikio, A., Alfonsi, L., Belova, E., Buchert, S., Clilverd, M., . . . Vierinen, J. (2015). The science case for the EISCAT_3D radar. Progress in Earth and Planetary Science, 2, 21.

Meier, M. M. M., Welten, K. C., Riebe, M. E. I., Caffee, M. W., Gritsevich, M., Maden, C., & Busemann, H. (2017). Park Forest (L5) and the asteroidal source of shocked L chondrites. Meteoritics and Planetary Science, 52(8), 1561–1576.

Moreno-Ibáñez, M., Gritsevich, M., & Trigo-Rodríguez, J. M. (2015). New methodology to determine the terminal height of a fireball. Icarus, 250, 544–552.

Moreno-Ibáñez, M., Silber, E. A., Gritsevich, M., & Trigo-Rodríguez, J. M. (2018). Verification of the Flow Regimes Based on High-fidelity Observations of Bright Meteors. The Astrophysical Journal, 863(2), 174.

Obenberger, K. S., Taylor, G. B., Hartman, J. M., Dowell, J., Ellingson, S. W., Helmboldt, J. F., . . . Wilson, T. L. (2014). Detection of Radio Emission from Fireballs. The Astrophysical Journal Letters, 788(2), L26.

Oppenheim, M. M., & Dimant, Y. S. (2015). First 3-D simulations of meteor plasma dynamics and turbulence. Geophysical Research Letters, 42(3), 681–687.

Pellinen-Wannberg, A. K., Häggström, I., Carrillo Sánchez, J. D., Plane, J. M. C., & Westman, A. (2014). Strong E region ionization caused by the 1767 trail during the 2002 Leonids. Journal of Geophysical Research, 119(9), 7880–7888.

Penttilä, A., Martikainen, J., Gritsevich, M., & Muinonen, K. (2018). Laboratory spectroscopy of meteorite samples at UV-vis-NIR wavelengths: Analysis and discrimination by principal components analysis. Journal of Quantitative Spectroscopy and Radiative Transfer, 206, 189–197.

Plane, J. M. C. (2012). Cosmic dust in the earth's atmosphere. Chemical Society Reviews, 41(19), 6507–6518.

Popova, O. P., Sidneva, S. N., Shuvalov, V. V., & Strelkov, A. S. (2000). Screening of Meteoroids by Ablation Vapor in High-Velocity Meteors. Earth, Moon, and Planets, 82, 109–128.

Qian, Z., Ross, D., Boyi, G., & John, D. M. (2016). High-resolution radar observations of meteoroid fragmentation and flaring at the Jicamarca Radio Observatory. Monthly Notices of the Royal Astronomical Society, 457(2), 1759–1769.

Sansom, E. K., Gruitsevich, M., Devillepoix, H. A. R., Jansen-Sturgeon, T., Shober, P., Bland, P. A., . . . Hartig, B. A. D. (2019). Determining fireball fates using the α–β criterion. The Astrophysical Journal, 885(2), 115.

Silber, E. A., Boslough, M., Hocking, W. K., Gritsevich, M., & Whitaker, R. W. (2018). Physics of Meteor Generated Shock Waves in the Earth’s Atmosphere – A Review. Advances in Space Research, 62(3), 489–532.

Silber, E. A., Hocking, W. K., Niculescu, M. L., Gritsevich, M., & Silber, R. E. (2017). On shock waves and the role of hyperthermal chemistry in the early diffusion of overdense meteor trains. Monthly Notices of the Royal Astronomical Society, 469(2), 1869–1882.

Šiljić, A., Lunić, F., Teklić, J., & Vinković, D. (2018). Proton-induced halo formation in charged meteors. Monthly Notices of the Royal Astronomical Society, 481(3), 2858–2870.

Spurný, P., & Ceplecha, Z. (2008). Is electric charge separation the main process for kinetic energy transformation into the meteor phenomenon? Astronomy and Astrophysics, 489(1), 449–454.

Spurný, P., Hans, B., Jobse, K., Koten, P., & Leven, J. V. T. (2000). New type of radiation of bright Leonid meteors above 130 km. Meteoritics & Planetary Science, 35(5), 1109–1115.

Stenbaek-Nielsen, H. C., & Jenniskens, P. (2004). A “shocking” Leonid meteor at 1000 fps. Advances in Space Research, 33(9), 1459–1465.

Stokan, E., & Campbell-Brown, M. D. (2014). Transverse motion of fragmenting faint meteors observed with the Canadian Automated Meteor Observatory. Icarus, 232, 1–12.

Stulov, V. P. (1998). Gasdynamical model of the Tunguska fall. Planetary and Space Science, 46(2–3), 253–260.

Sugar, G., Oppenheim, M. M., Dimant, Y. S., & Close, S. (2019). Formation of Plasma Around a Small Meteoroid: Electrostatic Simulations. Journal of Geophysical Research: Space Physics, 124(5), 3810–3826.

Suszcynsky, D. M., Strabley, R., Roussel-Dupre, R., Symbalisty, E. M. D, Armstrong, R. A., Lyons, W. A., & Taylor, M. (1999). Video and photometric observations of a sprite in coincidence with a meteor-triggered jet event. Journal of Geophysical Research, 104(D24), 31361–31367.

Trigo-Rodríguez, J. M., Lyytinen, E., Gritsevich, M., Moreno-Ibáñez, M., Bottke, W. F., Williams, I., . . . Grokhovsky, V. (2015). Orbit and dynamic origin of the recently recovered Annama’s H5 chondrite. Monthly Notices of the Royal Astronomical Society, 449(2), 2119–2127.

Turchak, L. I., & Gritsevich, M. I. (2014). Meteoroids Interaction with the Earth Atmosphere. Journal of Theoretical and Applied Mechanics, 44(4), 15–28.

Vinković, D. (2007). Thermalization of sputtered particles as the source of diffuse radiation from high altitude meteors. Advances in Space Research, 39(4), 574–582.

Vinković, D., Gritsevich, M., Srećković, V., Pečnik, B., Szabó, G., Debattista, V., . . . Grokhovsky, V. (2016). Big data era in meteor science. In A. Roggemans & P. Roggemans (Eds.), Proceedings of the International Meteor Conference (pp. 319–329). Retrieved from




How to Cite

Vinković, D. ., & Gritsevich, M. . (2020). THE CHALLENGES IN HYPERVELOCITY MICROPHYSICS RESEARCH ON METEOROID IMPACTS INTO THE ATMOSPHERE. Journal of the Geographical Institute “Jovan Cvijić” SASA, 70(1), 45–55.