THE CHALLENGES IN HYPERVELOCITY MICROPHYSICS RESEARCH ON METEOROID IMPACTS INTO THE ATMOSPHERE
DOI:
https://doi.org/10.2298/IJGI2001045VKeywords:
meteors, impacts, hypervelocity, ionosphere, Solar SystemAbstract
Meteor science contributes greatly to the study of the Solar System and the Earth’s atmosphere. However, despite its importance and very long history, meteor science still has a lot to explore in the domain of meteor plasma microphysics and the meteor–ionosphere interaction. Meteors are actually a difficult target for high‐resolution observations, which leads to the need for more ambitious interdisciplinary observational setups and campaigns. We describe some recent developments in the physics of meteor flight and microphysics of meteor plasma and argue that meteor science should be fully integrated into the science cases of large astronomical facilities.
Article metrics
References
Barenblatt, G. I. (1996). Scaling, self-similarity, and intermediate asymptotics: dimensional analysis and intermediate asymptotics (Vol. 14). Cambridge, UK: Cambridge University Press.
Barnett, J. J., & Corney, M. (1985). Middle atmosphere reference model derived from satellite data. In K. Labitzke, J. J. Barnett, & B. Edwards (Eds.), Middle Atmosphere Program. Handbook for MAP: Vol. 16. Atmospheric structure and its variation in the region 20 to 120 km (pp. 47–85). Urbana, IL: University of Illinois.
Bektešević, D., Vinković, D., Rasmussen, A., & Ivezić, Ž. (2018). Linear feature detection algorithm for astronomical surveys – II. Defocusing effects on meteor tracks. Monthly Notices of the Royal Astronomical Society, 474(4), 4837–4854. https://doi.org/10.1093/mnras/stx3085
Bouquet, A., Baratoux, D., Vaubaillon, J., Gritsevich, M. I., Mimoun, D., Mousis, O., & Bouley, S. (2014). Simulation of the capabilities of an orbiter for monitoring the entry of interplanetary matter into the terrestrial atmosphere. Planetary and Space Science, 103, 238–249. http://dx.doi.org/10.1016/j.pss.2014.09.001
Community Coordinated Modeling Center. (n.d.). MSISE Model. Retrieved from https://ccmc.gsfc.nasa.gov/models/modelinfo.php?model=MSISE
Dmitriev, V., Lupovka, V., & Gritsevich, M. (2015). Orbit determination based on meteor observations using numerical integration of equations of motion. Planetary and Space Science, 117, 223–235. http://dx.doi.org/10.1016/j.pss.2015.06.015
Gao, B., & Mathews, J. D. (2015) High-altitude meteors and meteoroid fragmentation observed at the Jicamarca Radio Observatory. Monthly Notices of the Royal Astronomical Society, 446(4), 3404–3415. https://doi.org/10.1093/mnras/stu2176
Gritsevich, M. I. (2007). Approximation of the observed motion of bolides by the analytical solution of the equations of meteor physics. Solar System Research, 41(6), 509–514. http://dx.doi.org/10.1134/S003809460706007X
Gritsevich, M. I. (2008a). Identification of Fireball Dynamic Parameters. Moscow University Mechanics Bulletin, 63(1), 1–5. https://doi.org/10.1007/s11971-008-1001-5
Gritsevich, M. I. (2008b). The Pribram, Lost City, Innisfree, and Neuschwanstein Falls: An analysis of the atmospheric trajectories. Solar System Research, 42(5), 372–390. http://dx.doi.org/10.1134/S003809460805002X
Gritsevich, M. I. (2008c). Validity of the photometric formula for estimating the mass of a fireball projectile. Doklady Physics, 53(2), 97–102. http://dx.doi.org/10.1134/S1028335808020110
Gritsevich, M. I. (2009). Determination of Parameters of Meteor Bodies Based on Flight Observational Data. Advances in Space Research, 44(3), 323–334. http://dx.doi.org/10.1016/j.asr.2009.03.030
Gritsevich, M. I., & Stulov, V. P. (2006). Extra-atmospheric masses of the Canadian Network bolides. Solar System Research, 40(6), 477–484. http://dx.doi.org/10.1134/S0038094606060050
Gritsevich, M. I., Stulov, V. P., & Turchak, L. I. (2012). Consequences for collisions of natural cosmic bodies with the Earth’s Atmosphere and Surface. Cosmic Research, 50(1), 56–64. http://dx.doi.org/10.1134/S0010952512010017
Gritsevich, M. I., Stulov, V. P., & Turchak, L. I. (2013). Formation of large craters on the earth as a result of impacts of natural cosmic bodies. Doklady Physics, 58(1), 37–39. http://dx.doi.org/10.1134/S1028335813010059
Gritsevich, M., & Koschny, D. (2011). Constraining the luminous efficiency of meteors. Icarus, 212(2), 877–884. http://dx.doi.org/10.1016/j.icarus.2011.01.033
Gritsevich, M., Dmitriev, V., Vinnikov, V., Kuznetsova, D., Lupovka, V., Peltoniemi, J., . . . Pupyrev, Y. (2017). Constraining the pre-atmospheric parameters of large meteoroids: Košice, a case study. In J. M. TrigoRodríguez, M. Gritsevich, & H. Palme (Eds.), Assessment and Mitigation of Asteroid Impact Hazards (pp. 153–183). https://doi.org/10.1007/978-3-319-46179-3_8
Hedin, A. E. (1991). Extension of the MSIS Thermospheric Model into the middle and lower atmosphere. Journal of Geophysical Research, 96(A2), 1159–1172. https://doi.org/10.1029/90JA02125
Hervig, M. E., Deaver, L. E., Bardeen, C. G., Russell III, J. M., Bailey, S. M., & Gordley, L. L. (2012). The content and composition of meteoric smoke in mesospheric ice particles from SOFIE observations. Journal of Atmospheric and Solar-Terrestrial Physics, 84–85, 1–6. https://doi.org/10.1016/j.jastp.2012.04.005
Jenniskens, P. (2001). Meteors as a delivery vehicle for organic matter to the early Earth. In B. Warmbein (Ed.), Proceedings of the Meteoroids 2001 Conference, 6–10 August 2001, Kiruna, Sweden (pp. 247–254). Noordwijk, Netherlands: ESA Publications Division.
Kartashova, A. P., Popova, O. P., Glazachev, D. O., Jenniskens, P., Emelˈyanenko, V. V., Podobnaya, E. D., & Skripnik, A. Y. (2018). Study of injuries from the Chelyabinsk airburst event. Planetary and Space Science, 160, 107–114. https://doi.org/10.1016/j.pss.2018.04.019
Kero, J., Szasz, C., Pellinen-Wannberg, A., Wannberg, G., Westman, A., & Meisel, D. D. (2008). Three‐dimensional radar observation of a submillimeter meteoroid fragmentation. Geophysical Research Letters, 35(4), L04101. https://doi.org/10.1029/2007GL032733
Kohout, T., Haloda, J., Halodová, P., Meier, M. M. M., Maden, C., Busemann, H., . . . Ishchenko, A. V. (2017). Annama H chondrite—Mineralogy, physical properties, cosmic ray exposure, and parent body history. Meteoritics & Planetary Science, 52(8), 1525–1541. https://doi.org/10.1111/maps.12871
Legacy Survey of Space and Time. (n.d.). Retrieved from https://www.lsst.org/
Li, S. J., Wang, S. J., Miao, B. K., Li, Y., Li, X. Y., Zeng, X. J., & Xia, Z. P. (2019) The density, porosity and pore morphology of fall and find ordinary chondrites. JGR Planets, 124(11), 2945–2969. https://doi.org/10.1029/2019JE005940
Lyytinen, E., & Gritsevich, M. (2016). Implications of the atmospheric density profile in the processing of fireball observations. Planetary and Space Science, 120, 35–42. https://doi.org/10.1016/j.pss.2015.10.012
Maksimova, A. A., Petrova, E. V., Chukin, A. V., Karabanalov, M. S., Felner, I., Gritsevich, M., & Oshtrakh, M. I. (2020). Characterization of the matrix and fusion crust of the recent meteorite fall Ozerki L6. Meteoritics and Planetary Science, 55(1), 231–244. https://doi.org/10.1111/maps.13423
Martikainen, J., Penttilä, A., Gritsevich, M., Lindqvist, H., & Muinonen, K. (2018). Spectral modeling of meteorites at UV-vis-NIR wavelengths. Journal of Quantitative Spectroscopy and Radiative Transfer, 204, 144–151. https://doi.org/10.1016/j.jqsrt.2017.09.017
McCrea, I., Aikio, A., Alfonsi, L., Belova, E., Buchert, S., Clilverd, M., . . . Vierinen, J. (2015). The science case for the EISCAT_3D radar. Progress in Earth and Planetary Science, 2, 21. https://doi.org/10.1186/s40645-015-0051-8
Meier, M. M. M., Welten, K. C., Riebe, M. E. I., Caffee, M. W., Gritsevich, M., Maden, C., & Busemann, H. (2017). Park Forest (L5) and the asteroidal source of shocked L chondrites. Meteoritics and Planetary Science, 52(8), 1561–1576. https://doi.org/10.1111/maps.12874
Moreno-Ibáñez, M., Gritsevich, M., & Trigo-Rodríguez, J. M. (2015). New methodology to determine the terminal height of a fireball. Icarus, 250, 544–552. http://dx.doi.org/10.1016/j.icarus.2014.12.027
Moreno-Ibáñez, M., Silber, E. A., Gritsevich, M., & Trigo-Rodríguez, J. M. (2018). Verification of the Flow Regimes Based on High-fidelity Observations of Bright Meteors. The Astrophysical Journal, 863(2), 174. http://doi.org/10.3847/1538-4357/aad334
Obenberger, K. S., Taylor, G. B., Hartman, J. M., Dowell, J., Ellingson, S. W., Helmboldt, J. F., . . . Wilson, T. L. (2014). Detection of Radio Emission from Fireballs. The Astrophysical Journal Letters, 788(2), L26. https://doi.org/10.1088/2041-8205/788/2/L26
Oppenheim, M. M., & Dimant, Y. S. (2015). First 3-D simulations of meteor plasma dynamics and turbulence. Geophysical Research Letters, 42(3), 681–687. https://doi.org/10.1002/2014GL062411
Pellinen-Wannberg, A. K., Häggström, I., Carrillo Sánchez, J. D., Plane, J. M. C., & Westman, A. (2014). Strong E region ionization caused by the 1767 trail during the 2002 Leonids. Journal of Geophysical Research, 119(9), 7880–7888. https://doi.org/10.1002/2014JA020290
Penttilä, A., Martikainen, J., Gritsevich, M., & Muinonen, K. (2018). Laboratory spectroscopy of meteorite samples at UV-vis-NIR wavelengths: Analysis and discrimination by principal components analysis. Journal of Quantitative Spectroscopy and Radiative Transfer, 206, 189–197. https://doi.org/10.1016/j.jqsrt.2017.11.011
Plane, J. M. C. (2012). Cosmic dust in the earth's atmosphere. Chemical Society Reviews, 41(19), 6507–6518. https://doi.org/10.1039/C2CS35132C
Popova, O. P., Sidneva, S. N., Shuvalov, V. V., & Strelkov, A. S. (2000). Screening of Meteoroids by Ablation Vapor in High-Velocity Meteors. Earth, Moon, and Planets, 82, 109–128. https://doi.org/10.1023/A:1017063007210
Qian, Z., Ross, D., Boyi, G., & John, D. M. (2016). High-resolution radar observations of meteoroid fragmentation and flaring at the Jicamarca Radio Observatory. Monthly Notices of the Royal Astronomical Society, 457(2), 1759–1769. https://doi.org/10.1093/mnras/stw070
Sansom, E. K., Gruitsevich, M., Devillepoix, H. A. R., Jansen-Sturgeon, T., Shober, P., Bland, P. A., . . . Hartig, B. A. D. (2019). Determining fireball fates using the α–β criterion. The Astrophysical Journal, 885(2), 115. https://doi.org/10.3847/1538-4357/ab4516
Silber, E. A., Boslough, M., Hocking, W. K., Gritsevich, M., & Whitaker, R. W. (2018). Physics of Meteor Generated Shock Waves in the Earth’s Atmosphere – A Review. Advances in Space Research, 62(3), 489–532. https://doi.org/10.1016/j.asr.2018.05.010
Silber, E. A., Hocking, W. K., Niculescu, M. L., Gritsevich, M., & Silber, R. E. (2017). On shock waves and the role of hyperthermal chemistry in the early diffusion of overdense meteor trains. Monthly Notices of the Royal Astronomical Society, 469(2), 1869–1882. https://doi.org/10.1093/mnras/stx923
Šiljić, A., Lunić, F., Teklić, J., & Vinković, D. (2018). Proton-induced halo formation in charged meteors. Monthly Notices of the Royal Astronomical Society, 481(3), 2858–2870. https://doi.org/10.1093/mnras/sty2357
Spurný, P., & Ceplecha, Z. (2008). Is electric charge separation the main process for kinetic energy transformation into the meteor phenomenon? Astronomy and Astrophysics, 489(1), 449–454. https://doi.org/10.1051/0004-6361:200810069
Spurný, P., Hans, B., Jobse, K., Koten, P., & Leven, J. V. T. (2000). New type of radiation of bright Leonid meteors above 130 km. Meteoritics & Planetary Science, 35(5), 1109–1115. https://doi.org/10.1111/j.1945-5100.2000.tb01497.x
Stenbaek-Nielsen, H. C., & Jenniskens, P. (2004). A “shocking” Leonid meteor at 1000 fps. Advances in Space Research, 33(9), 1459–1465. https://doi.org/10.1016/j.asr.2003.06.003
Stokan, E., & Campbell-Brown, M. D. (2014). Transverse motion of fragmenting faint meteors observed with the Canadian Automated Meteor Observatory. Icarus, 232, 1–12. https://doi.org/10.1016/j.icarus.2014.01.002
Stulov, V. P. (1998). Gasdynamical model of the Tunguska fall. Planetary and Space Science, 46(2–3), 253–260. https://doi.org/10.1016/S0032-0633(97)00082-2
Sugar, G., Oppenheim, M. M., Dimant, Y. S., & Close, S. (2019). Formation of Plasma Around a Small Meteoroid: Electrostatic Simulations. Journal of Geophysical Research: Space Physics, 124(5), 3810–3826. https://doi.org/10.1029/2018JA026434
Suszcynsky, D. M., Strabley, R., Roussel-Dupre, R., Symbalisty, E. M. D, Armstrong, R. A., Lyons, W. A., & Taylor, M. (1999). Video and photometric observations of a sprite in coincidence with a meteor-triggered jet event. Journal of Geophysical Research, 104(D24), 31361–31367. https://doi.org/10.1029/1999JD900962
Trigo-Rodríguez, J. M., Lyytinen, E., Gritsevich, M., Moreno-Ibáñez, M., Bottke, W. F., Williams, I., . . . Grokhovsky, V. (2015). Orbit and dynamic origin of the recently recovered Annama’s H5 chondrite. Monthly Notices of the Royal Astronomical Society, 449(2), 2119–2127. http://dx.doi.org/10.1093/mnras/stv378
Turchak, L. I., & Gritsevich, M. I. (2014). Meteoroids Interaction with the Earth Atmosphere. Journal of Theoretical and Applied Mechanics, 44(4), 15–28. http://dx.doi.org/10.2478/jtam-2014-0020
Vinković, D. (2007). Thermalization of sputtered particles as the source of diffuse radiation from high altitude meteors. Advances in Space Research, 39(4), 574–582. https://doi.org/10.1016/j.asr.2005.08.035
Vinković, D., Gritsevich, M., Srećković, V., Pečnik, B., Szabó, G., Debattista, V., . . . Grokhovsky, V. (2016). Big data era in meteor science. In A. Roggemans & P. Roggemans (Eds.), Proceedings of the International Meteor Conference (pp. 319–329). Retrieved from http://articles.adsabs.harvard.edu/pdf/2016pimo.conf..319V
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Journal of the Geographical Institute “Jovan Cvijić” SASA
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.