A COMPLIANCE ASSESSMENT OF GNSS STATION NETWORKS IN SERBIA
DOI:
https://doi.org/10.2298/IJGI2401047OKeywords:
GNSS receiver networks, compliance evaluation, AGROS, VekomNet, GeotaurNetAbstract
Since the early 21st century, Global Positioning System (GPS) technology has dominated geodetic reference networks. Almost all countries established a permanent Global Navigation Satellite System (GNSS) station network to augment all available GNSS systems. By the end of 2005, Serbia completed the Active Geodetic Reference Network as a particular project of Serbia's Republic Geodetic Authority (RGA). Besides RGA, two private companies, Vekom and Geotaur, have established permanent station networks. This paper assesses the compliance of all the three networks, and network results are evaluated against the spatial distance determined by classical geodetic methods. When all available GNSS constellations are utilized, NAVSTAR, GLONASS, BEIDOU, and GALILEO, in the processing procedure, the established networks in Serbia align within a margin of about 3 mm across all coordinate axes. The results obtained within the research indicate that by using GNSS networks, it is possible to provide the coordinates of the points for the establishment of the national spatial reference system of Serbia, the reference system in almost all engineering fields, reference systems for the maintenance works of the real estate cadastre, and it is also possible to provide coordinates of points that can be used to define local, national, and world reference heights surfaces.
Article metrics
References
AGROS. (2023). Active Geodetic Reference Network of Serbia. Republic Geodetic Authority. Retrieved December 20, 2023 from http://agros.rgz.gov.rs/
Bos, M. S., & Schernec, H. G. (2023). Onsala Space Observatory. Retrieved November 18, 2023 from http://holt.oso.chalmers.se/loading/
Bruyninx, C., Legrand, J., Fabian, A., & Pottiaux, E. (2019). GNSS metadata and data validation in the EUREF Permanent Network. GPS Solutions, 23(4), Article 106. https://doi.org/10.1007/s10291-019-0880-9
China Satellite Navigation Office. (2018). BeiDou Navigation Satellite System Open Service Performance Standard (Version 2.0). http://www.beidou.gov.cn/xt/gfxz/201812/P020181227529449178798.pdf
Dach, R., Lutz, S., Walser, P., & Fridez, P. (Eds). (2015). Bernese GNSS Software Version 5.2. User manual. Astronomical Institute, University of Bern, Bern Open Publishing. https://doi.org/10.7892/boris.72297
Dach, R., Schaer, S., Arnold, D., Brockmann, E., Kalarus, M. S., Prange, L., Stebler, P., Jäggi, A. (2023). CODE final product series for the IGS. [Data set]. Astronomical Institute, University of Bern. https://doi.org/10.48350/185744
Duan, B., Hugentobler, U., Montenbruck, O., & Steigenberger, P. (2023). Performance of Galileo satellite products determined from multi-frequency measurements. Journal of Geodesy, 97(4), Article 32. https://doi.org/10.1007/s00190-023-01723-3
EUREF. (2022). EUREF Permanent GNSS Network. Retrieved February 13, 2022 from https://www.epncb.oma.be/
EUREF. (2023). EUREF Permanent GNSS Network Station list. Retrieved August 20, 2023 from https://epncb.eu/_networkdata/stationlist.php
Falcone, M., Hahn, J., & Burger, T. (2017). Galileo. In P. J. G. Teunissen & O. Montenbruck (Eds.), Springer Handbook of Global Navigation Satellite Systems (pp. 247–272). Springer International Publishing. https://doi.org/10.1007/978-3-319-42928-1_9
GALILEO, European Global Navigation Satellite System. (2019). Open service definition document, Issue 1.1. https://www.gsc-europa.eu/sites/default/files/sites/all/files/Galileo-OS-SDD_v1.2.pdf
García-Asenjo, L., Baselga, S., Atkins, C., & Garrigues, P. (2021). Development of a Submillimetric GNSS-Based Distance Meter for Length Metrology. Sensors, 21(4), Article 1145. https://doi.org/10.3390/s21041145
Geotaur. (2022). GeotaurNet. Retrieved March 17, 2022 from https://geotaur.com/sr/
GLONASS, Global navigation satellite system. (2020). Open Service Performance Standard (OS PS), Edition 2.2. https://glonass-iac.ru/upload/docs/stehos/stehos_en.pdf
Héroux, P., Kouba, J., Beck, N., Lahaye, F., Mireault, Y., Tétreault, P., Collins, P., MacLeod, K., & Caissy, M. (2006). Space Geodetic Techniques and the Canadian Spatial Reference System Evolution, Status and Possibilities. Geomatica, 60(2), 137–150. https://naturalresources.canada.ca/sites/www.nrcan.gc.ca/files/earthsciences/pdf/geomatica.pdf
Hofmann-Wellenhof, B., Lichtenegger, H., & Wasle, E. (2008). GNSS – Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and more. Springer Vienna. https://doi.org/10.1007/978-3-211-73017-1
Johnston, G., Riddell, A., & Hausler, G. (2017). The International GNSS Service. In P. J. G. Teunissen & O. Montenbruck (Eds.), Springer Handbook of Global Navigation Satellite Systems (pp. 967–982). Springer International Publishing. https://doi.org/10.1007/978-3-319-42928-1_33
JPL. (2023). JPL Planetary and Lunar Ephemerides. Retrieved November 18, 2023 from https://ssd.jpl.nasa.gov/planets/eph_export.html
Kee, C., Parkinson, B. W., & Axelrad, P. (1991). Wide Area Differential GPS. Navigation, 38(2), 123–145. https://doi.org/10.1002/j.2161-4296.1991.tb01720.x
Landskron, D., & Böhm, J. (2018). VMF3/GPT3: refined discrete and empirical troposphere mapping functions. Journal of Geodesy, 92(4), 349–360. https://doi.org/10.1007/s00190-017-1066-2
Legrand, J., Bruyninx, C., Altamimi, Z., Caporali, A., Kenyeres, A., & Lidberg, M. (2022). Guidelines for EUREF Densifications. IAG sub−commission for the European Reference Frame – EUREF. http://www.epncb.oma.be/_documentation/guidelines/Guidelines_for_EUREF_Densifications.pdf
Milev, G., Rosenthal, G., & Vassileva, K. (2004, May 22–27). European Position Determination System (EUPOS). FIG Working Week 2004. Athens, Greece. https://www.fig.net/resources/proceedings/fig_proceedings/athens/papers/ts11/TS11_1_Milev_et_al.pdf
Odalović, O., & Aleksić, I. R. (2006, October 8–13). Active Geodetic Network of Serbia. In Proceedings of the XXIII International FIG Congress – INTERGEO. Munich, Germany. http://www.fig.net/resources/proceedings/fig_proceedings/fig2006/papers/ts03/ts03_05_odalovic_aleksic_0798.pdf
Odalović, O., Popović, J., Grekulović, S., Todorović-Drakul, M., & Aleksić, I. R. (2011, June 24–26). Geodetic infrastructure of Serbia. In Proceedings of International Scientific Conference “Professional Practice and Education in Geodesy and Related Fields“ (pp. 192–201). University of Belgrade – Faculty of Civil Engineering. https://grafar.grf.bg.ac.rs/handle/123456789/2238
Pipitone, C., Maltese, A., Lo Brutto, M., & Dardanelli, G. (2023). A Review of Selected Applications of GNSS CORS and Related Experiences at the University of Palermo (Italy). Remote Sensing, 15(22), Article 5343. https://doi.org/10.3390/rs15225343
Radio Technical Commission for Maritime Services. (2022). 2022 RTCM's 75th Annual Assembly & Conference. Retrieved from https://www.rtcm.org
Revnivykh, S., Bolkunov, A., Serdyukov, A., & Montenbruck, O. (2017). GLONASS. In P. J. G. Teunissen & O. Montenbruck (Eds.), Springer Handbook of Global Navigation Satellite Systems (pp. 219–245). Springer International Publishing. https://doi.org/10.1007/978-3-319-42928-1_8
RGA. (2023). Republic Geodetic Authority. Retrieved November 18, 2023 from https://www.rgz.gov.rs/
Rodríguez, J. C., Azcue, E., Puente, V., López-F., J. A., López-P., J. A., Martínez, E., Sobrino, J. A. S., Valdés, M., Vaquero, B., & de Vicente, P. (2022). Geodetic Analyses at the National Geographic Institute of Spain. In J. T. Freymueller & L. Sánchez (Eds.), Geodesy for a Sustainable Earth (pp. 95–104). Springer International Publishing. https://doi.org/10.1007/1345_2022_182
Seeber, G. (2003). Satellite Geodesy. De Gruyter. https://doi.org/10.1515/9783110200089
Śledziński, J. (2004, April 25–30). New European Initiative: EUPOS – European Position Determination System. Geodetic and Geodynamic Programmes of the CEI, 11 Symposium. Nice, France https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-PWA3-0015-0026
Uznański, A. (2023). Analysis of differences in accuracy of positioning tied to various CORS networks in Poland: Case study. Reports on Geodesy and Geoinformatics, 116(1), 47–60. https://doi.org/10.2478/rgg-2023-0010
Vekom. (2023). VekomNet. Retrieved March 10, 2023 from https://vekom.com/vekomnet/
Wagner, A., Fersch, B., Yuan, P., Rummler, T., & Kunstmann, H. (2022). Assimilation of GNSS and Synoptic Data in a Convection Permitting Limited Area Model: Improvement of Simulated Tropospheric Water Vapor Content. Frontiers in Earth Science, 10, Article 869504. https://doi.org/10.3389/feart.2022.869504
Weber, G., Becker, M., & Ihde, J. (2007). Permanent GNSS Networks, including SAPOS. In J. Müller & H. Hornik (Eds.), National report of the Federal Republic of Germany on the geodetic activities in the years 2003–2007 (pp. 117–122). Deutsche Geodätische Kommission.
Weiss, J. P., Steigenberger, P., & Springer, T. (2017). Orbit and Clock Product Generation. In P. J. G. Teunissen & O. Montenbruck (Eds.), Springer Handbook of Global Navigation Satellite Systems (pp. 983–1010). Springer International Publishing. https://doi.org/10.1007/978-3-319-42928-1_34
Yang, Y., Tang, J., & Montenbruck, O. (2017). Chinese Navigation Satellite Systems. In P. J. G. Teunissen & O. Montenbruck (Eds.), Springer Handbook of Global Navigation Satellite Systems (pp. 273–304). Springer International Publishing. https://doi.org/10.1007/978-3-319-42928-1_10
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of the Geographical Institute “Jovan Cvijić” SASA
This work is licensed under a Creative Commons Attribution 4.0 International License.