• Oleg Odalović University of Belgrade, Faculty of Civil Engineering, Department of Geodesy and Geoinformatics, Belgrade
  • Dušan Petković University of Belgrade, Faculty of Civil Engineering, Department of Geodesy and Geoinformatics, Belgrade
  • Sanja Grekulović University of Belgrade, Faculty of Civil Engineering, Department of Geodesy and Geoinformatics, Belgrade
  • Miljana Todorović Drakul University of Belgrade, Faculty of Civil Engineering, Department of Geodesy and Geoinformatics, Belgrade




GNSS receiver networks, compliance evaluation, AGROS, VekomNet, GeotaurNet


Since the early 21st century, Global Positioning System (GPS) technology has dominated geodetic reference networks. Almost all countries established a permanent Global Navigation Satellite System (GNSS) station network to augment all available GNSS systems. By the end of 2005, Serbia completed the Active Geodetic Reference Network as a particular project of Serbia's Republic Geodetic Authority (RGA). Besides RGA, two private companies, Vekom and Geotaur, have established permanent station networks. This paper assesses the compliance of all the three networks, and network results are evaluated against the spatial distance determined by classical geodetic methods. When all available GNSS constellations are utilized, NAVSTAR, GLONASS, BEIDOU, and GALILEO, in the processing procedure, the established networks in Serbia align within a margin of about 3 mm across all coordinate axes. The results obtained within the research indicate that by using GNSS networks, it is possible to provide the coordinates of the points for the establishment of the national spatial reference system of Serbia, the reference system in almost all engineering fields, reference systems for the maintenance works of the real estate cadastre, and it is also possible to provide coordinates of points that can be used to define local, national, and world reference heights surfaces.

Article metrics


AGROS. (2023). Active Geodetic Reference Network of Serbia. Republic Geodetic Authority. Retrieved December 20, 2023 from http://agros.rgz.gov.rs/

Bos, M. S., & Schernec, H. G. (2023). Onsala Space Observatory. Retrieved November 18, 2023 from http://holt.oso.chalmers.se/loading/

Bruyninx, C., Legrand, J., Fabian, A., & Pottiaux, E. (2019). GNSS metadata and data validation in the EUREF Permanent Network. GPS Solutions, 23(4), Article 106. https://doi.org/10.1007/s10291-019-0880-9

China Satellite Navigation Office. (2018). BeiDou Navigation Satellite System Open Service Performance Standard (Version 2.0). http://www.beidou.gov.cn/xt/gfxz/201812/P020181227529449178798.pdf

Dach, R., Lutz, S., Walser, P., & Fridez, P. (Eds). (2015). Bernese GNSS Software Version 5.2. User manual. Astronomical Institute, University of Bern, Bern Open Publishing. https://doi.org/10.7892/boris.72297

Dach, R., Schaer, S., Arnold, D., Brockmann, E., Kalarus, M. S., Prange, L., Stebler, P., Jäggi, A. (2023). CODE final product series for the IGS. [Data set]. Astronomical Institute, University of Bern. https://doi.org/10.48350/185744

Duan, B., Hugentobler, U., Montenbruck, O., & Steigenberger, P. (2023). Performance of Galileo satellite products determined from multi-frequency measurements. Journal of Geodesy, 97(4), Article 32. https://doi.org/10.1007/s00190-023-01723-3

EUREF. (2022). EUREF Permanent GNSS Network. Retrieved February 13, 2022 from https://www.epncb.oma.be/

EUREF. (2023). EUREF Permanent GNSS Network Station list. Retrieved August 20, 2023 from https://epncb.eu/_networkdata/stationlist.php

Falcone, M., Hahn, J., & Burger, T. (2017). Galileo. In P. J. G. Teunissen & O. Montenbruck (Eds.), Springer Handbook of Global Navigation Satellite Systems (pp. 247–272). Springer International Publishing. https://doi.org/10.1007/978-3-319-42928-1_9

GALILEO, European Global Navigation Satellite System. (2019). Open service definition document, Issue 1.1. https://www.gsc-europa.eu/sites/default/files/sites/all/files/Galileo-OS-SDD_v1.2.pdf

García-Asenjo, L., Baselga, S., Atkins, C., & Garrigues, P. (2021). Development of a Submillimetric GNSS-Based Distance Meter for Length Metrology. Sensors, 21(4), Article 1145. https://doi.org/10.3390/s21041145

Geotaur. (2022). GeotaurNet. Retrieved March 17, 2022 from https://geotaur.com/sr/

GLONASS, Global navigation satellite system. (2020). Open Service Performance Standard (OS PS), Edition 2.2. https://glonass-iac.ru/upload/docs/stehos/stehos_en.pdf

Héroux, P., Kouba, J., Beck, N., Lahaye, F., Mireault, Y., Tétreault, P., Collins, P., MacLeod, K., & Caissy, M. (2006). Space Geodetic Techniques and the Canadian Spatial Reference System Evolution, Status and Possibilities. Geomatica, 60(2), 137–150. https://naturalresources.canada.ca/sites/www.nrcan.gc.ca/files/earthsciences/pdf/geomatica.pdf

Hofmann-Wellenhof, B., Lichtenegger, H., & Wasle, E. (2008). GNSS – Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and more. Springer Vienna. https://doi.org/10.1007/978-3-211-73017-1

Johnston, G., Riddell, A., & Hausler, G. (2017). The International GNSS Service. In P. J. G. Teunissen & O. Montenbruck (Eds.), Springer Handbook of Global Navigation Satellite Systems (pp. 967–982). Springer International Publishing. https://doi.org/10.1007/978-3-319-42928-1_33

JPL. (2023). JPL Planetary and Lunar Ephemerides. Retrieved November 18, 2023 from https://ssd.jpl.nasa.gov/planets/eph_export.html

Kee, C., Parkinson, B. W., & Axelrad, P. (1991). Wide Area Differential GPS. Navigation, 38(2), 123–145. https://doi.org/10.1002/j.2161-4296.1991.tb01720.x

Landskron, D., & Böhm, J. (2018). VMF3/GPT3: refined discrete and empirical troposphere mapping functions. Journal of Geodesy, 92(4), 349–360. https://doi.org/10.1007/s00190-017-1066-2

Legrand, J., Bruyninx, C., Altamimi, Z., Caporali, A., Kenyeres, A., & Lidberg, M. (2022). Guidelines for EUREF Densifications. IAG sub−commission for the European Reference Frame – EUREF. http://www.epncb.oma.be/_documentation/guidelines/Guidelines_for_EUREF_Densifications.pdf

Milev, G., Rosenthal, G., & Vassileva, K. (2004, May 22–27). European Position Determination System (EUPOS). FIG Working Week 2004. Athens, Greece. https://www.fig.net/resources/proceedings/fig_proceedings/athens/papers/ts11/TS11_1_Milev_et_al.pdf

Odalović, O., & Aleksić, I. R. (2006, October 8–13). Active Geodetic Network of Serbia. In Proceedings of the XXIII International FIG Congress – INTERGEO. Munich, Germany. http://www.fig.net/resources/proceedings/fig_proceedings/fig2006/papers/ts03/ts03_05_odalovic_aleksic_0798.pdf

Odalović, O., Popović, J., Grekulović, S., Todorović-Drakul, M., & Aleksić, I. R. (2011, June 24–26). Geodetic infrastructure of Serbia. In Proceedings of International Scientific Conference “Professional Practice and Education in Geodesy and Related Fields“ (pp. 192–201). University of Belgrade – Faculty of Civil Engineering. https://grafar.grf.bg.ac.rs/handle/123456789/2238

Pipitone, C., Maltese, A., Lo Brutto, M., & Dardanelli, G. (2023). A Review of Selected Applications of GNSS CORS and Related Experiences at the University of Palermo (Italy). Remote Sensing, 15(22), Article 5343. https://doi.org/10.3390/rs15225343

Radio Technical Commission for Maritime Services. (2022). 2022 RTCM's 75th Annual Assembly & Conference. Retrieved from https://www.rtcm.org

Revnivykh, S., Bolkunov, A., Serdyukov, A., & Montenbruck, O. (2017). GLONASS. In P. J. G. Teunissen & O. Montenbruck (Eds.), Springer Handbook of Global Navigation Satellite Systems (pp. 219–245). Springer International Publishing. https://doi.org/10.1007/978-3-319-42928-1_8

RGA. (2023). Republic Geodetic Authority. Retrieved November 18, 2023 from https://www.rgz.gov.rs/

Rodríguez, J. C., Azcue, E., Puente, V., López-F., J. A., López-P., J. A., Martínez, E., Sobrino, J. A. S., Valdés, M., Vaquero, B., & de Vicente, P. (2022). Geodetic Analyses at the National Geographic Institute of Spain. In J. T. Freymueller & L. Sánchez (Eds.), Geodesy for a Sustainable Earth (pp. 95–104). Springer International Publishing. https://doi.org/10.1007/1345_2022_182

Seeber, G. (2003). Satellite Geodesy. De Gruyter. https://doi.org/10.1515/9783110200089

Śledziński, J. (2004, April 25–30). New European Initiative: EUPOS – European Position Determination System. Geodetic and Geodynamic Programmes of the CEI, 11 Symposium. Nice, France https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-PWA3-0015-0026

Uznański, A. (2023). Analysis of differences in accuracy of positioning tied to various CORS networks in Poland: Case study. Reports on Geodesy and Geoinformatics, 116(1), 47–60. https://doi.org/10.2478/rgg-2023-0010

Vekom. (2023). VekomNet. Retrieved March 10, 2023 from https://vekom.com/vekomnet/

Wagner, A., Fersch, B., Yuan, P., Rummler, T., & Kunstmann, H. (2022). Assimilation of GNSS and Synoptic Data in a Convection Permitting Limited Area Model: Improvement of Simulated Tropospheric Water Vapor Content. Frontiers in Earth Science, 10, Article 869504. https://doi.org/10.3389/feart.2022.869504

Weber, G., Becker, M., & Ihde, J. (2007). Permanent GNSS Networks, including SAPOS. In J. Müller & H. Hornik (Eds.), National report of the Federal Republic of Germany on the geodetic activities in the years 2003–2007 (pp. 117–122). Deutsche Geodätische Kommission.

Weiss, J. P., Steigenberger, P., & Springer, T. (2017). Orbit and Clock Product Generation. In P. J. G. Teunissen & O. Montenbruck (Eds.), Springer Handbook of Global Navigation Satellite Systems (pp. 983–1010). Springer International Publishing. https://doi.org/10.1007/978-3-319-42928-1_34

Yang, Y., Tang, J., & Montenbruck, O. (2017). Chinese Navigation Satellite Systems. In P. J. G. Teunissen & O. Montenbruck (Eds.), Springer Handbook of Global Navigation Satellite Systems (pp. 273–304). Springer International Publishing. https://doi.org/10.1007/978-3-319-42928-1_10




How to Cite

Odalović, O., Petković, D., Grekulović, S., & Todorović Drakul, M. (2024). A COMPLIANCE ASSESSMENT OF GNSS STATION NETWORKS IN SERBIA. Journal of the Geographical Institute “Jovan Cvijić” SASA, 74(1), 47–61. https://doi.org/10.2298/IJGI2401047O