GEOSPATIAL ESTIMATION OF ROOFTOP SOLAR PHOTOVOLTAIC TECHNICAL POTENTIAL IN SERBIA

Authors

DOI:

https://doi.org/10.2298/IJGI250519020D

Keywords:

rooftop photovoltaic, prosumer, technical potential, solar energy, Serbia

Abstract

Rooftop photovoltaic (PV) systems are essential for meeting the increasing demand for electricity while reducing reliance on fossil fuels, thereby enhancing overall air quality. Yet, for many countries, the geospatial distribution of rooftop PV potential remains poorly quantified, constraining the design of effective policies and grid planning. This study delivers the first nationwide, building-level assessment of rooftop PV in Serbia, integrating Microsoft machine-learning building footprints with Global Solar Atlas irradiance data and a calibrated performance-ratio model on the Google Earth Engine platform. The findings show an upper-bound technical potential of 41.1 GW and 51.5 TWh/year, which is around 40% more than Serbia's current electricity consumption. In Serbia, spatial heterogeneity is present, as cities such as Novi Sad and Leskovac surpass 1 TWh annually, while municipalities in rural areas fall below 20 GWh. The comparison of per-area yield intensity (~250 GWh/km²) in this study exceeds previous estimates in Serbia, while still aligning with global upper-bound studies. Novel contributions include municipal-level mapping across 197 units, integration of prosumer registries, and a social case study demonstrating the role of rooftop PV in alleviating energy poverty. This study takes a novel approach, based on unconventional data, to estimate rooftop PV potential at the level where decisions actually happen. It enables a bottom-up shift in energy policy, empowering local authorities to drive the energy transition independently from centralized energy policy. These findings support the development of more effective local energy plans that align with residents' needs and overcome bureaucratic delays in project approvals.

Article metrics

References

Aleksić, V., & Batas-Bjelić, I. (2021). Do We Need More Ambition for the Renewable Energy Transition in Serbia? Foundations of Energy Governance and Planning. Energija, ekonomija, ekologija, 23(3), 1–9. https://doi.org/10.46793/EEE21-3.01A

Alhmoud, L. (2023). Why does the PV solar power plant operate ineffectively? Energies, 16(10), Article 4074. https://doi.org/10.3390/en16104074

Ašonja, A. & Vuković, V. (2018). The Potentials of Solar Energy in the Republic of Serbia : Current Situation, Possibilities and Barriers. Applied Engineering Letters, 3(3), 90–97. https://doi.org/10.18485/aeletters.2018.3.3.2

Association RES Serbia. (2025). Raising Awareness on Climate Change and Green Transition in Serbia. https://oie.rs/wp-content/uploads/2025/02/Report-RES-Serbia.pdf

Assouline, D., Mohajeri, N., & Scartezzini, J. L. (2017). Quantifying rooftop photovoltaic solar energy potential: A machine learning approach. Solar Energy, 141, 278–296. https://doi.org/10.1016/j.solener.2016.11.045

Avramović, T., & Batas Bjelić, I. (2024). Ponovna upotreba PV panela, kao prilika za smanjenje energetskog siromaštva [Second life of PV panels as an opportunity for reduction of energy poverty]. In N. Rajaković (Ed.), Zbornik apstrakata: 39 Međunarodno savetovanje Energetika 2024 (p. 58). Savez energetičara. https://dais.sanu.ac.rs/123456789/17366

Ban, M., Brajković, J. Buzarovski, S., Lončarević, Š., Maras, J., Robić, S., Stupin, K., Šantalab, D., Toš, A., & Zidar, M. (2021). Study on Addressing Energy Poverty in the Energy Community Contracting Parties. DOOR; EIHP; Energy Community. https://www.energy-community.org/dam/jcr:f201fefd-3281-4a1f-94f9-23c3fce4bbf0/DOOREIHP_poverty_122021.pdf

Baruch-Mordo, S., Kiesecker, J. M., Kennedy, C. M., Oakleaf, J. R., & Opperman, J. J. (2019). From Paris to practice: sustainable implementation of renewable energy goals. Environmental Research Letters, 14(2), Article 024013. https://doi.org/10.1088/1748-9326/aaf6e0

Batas Bjelic, I., & Ciric, R. M. (2014). Optimal distributed generation planning at a local level–A review of Serbian renewable energy development. Renewable and Sustainable Energy Reviews, 39, 79–86. https://doi.org/10.1016/j.rser.2014.07.088

Batas-Bjelic, I., Rajakovic, N., & Duic, N. (2017). Smart municipal energy grid within electricity market. Energy, 137, 1277–1285. https://doi.org/10.1016/j.energy.2017.06.177

Batas Bjelić, I. (March 23, 2024). Energetika Srbije - godinama na pogrešnom putu [Energy of Serbia - for years on the wrong path]. Novi magazin, 673, 62. https://dais.sanu.ac.rs/handle/123456789/16567

Batas Bjelić, I., & Đukić, P. (2018). The mitigation of the economic impacts from the fuel price shocks: Serbian case. In M. Komatina, D. Nonić, & B. Jovančićević (Eds.), HUMBOLDT-KOLLEG 2018: Sustainable Development and Climate Change: Connecting Research, Education, Policy and Practice: Book of abstracts (p. 58). Humboldt-Club Serbia; University, Faculty of Forestry. https://www.humboldt-serbia.ac.rs/kolleg2018/pics/Humbolt-2018.pdf

Batić, I., & Ivančić, A. (2023). Analiza kapaciteta za izgradnju fotonaponskih sistema na krovovima stambenih zgrada u Srbiji [Analysis of Capacity for the Construction of Photovoltaic Systems on Residential Building Roofs in Serbia]. Energija, ekonomija, ekologija, 25(3), 9–16. https://doi.org/10.46793/EEE23-3.09B

Bergamasco, L., & Asinari, P. (2011). Scalable methodology for the photovoltaic solar energy potential assessment based on available roof surface area: Application to Piedmont Region (Italy). Solar Energy, 85(5), 1041–1055. https://doi.org/10.1016/j.solener.2011.02.022

Bódis, K., Kougias, I., Jäger-Waldau, A., Taylor, N., & Szabó, S. (2019). A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union. Renewable and Sustainable Energy Reviews, 114, Article 109309. https://doi.org/10.1016/j.rser.2019.109309

Brankov, B., Stanojević, A., Nenković-Riznić, M., & Pucar, M. (2020). The possibilities for implementation of photovoltaic solar panels in multi-family housing areas. In Z. Stević (Ed.), Proceedings of 8th International Conference on Renewable Electrical Power Sources (pp. 167–175). Savez mašinskih i elektrotehničkih inženjera i tehničara Srbije (SMEITS).

Brito, M. C., Gomes, N., Santos, T., & Tenedório, J. A. (2012). Photovoltaic potential in a Lisbon suburb using LiDAR data. Solar Energy, 86(1), 283–288. https://doi.org/10.1016/j.solener.2011.09.031

Croon, T. M., Hoekstra, J. S. C. M., & Dubois, U. (2024). Energy poverty alleviation by social housing providers: A qualitative investigation of targeted interventions in France, England, and the Netherlands. Energy Policy, 192, Article 114247. https://doi.org/10.1016/j.enpol.2024.114247

Denholm, P., Drury, E., Margolis, R., Mehos, M., & Sioshansi, F. P. (2010). Solar Energy: The Largest Energy Resource. In F. P. Sioshansi (Ed.), Generating Electricity in a Carbon-Constrained World (pp. 271–302). https://doi.org/10.1016/B978-1-85617-655-2.00010-9

Dodig, A., & Djapic, V. (2023, March). Digital solution to estimate solar power potential of rooftops in City of Belgrade. In M. Trajnovic, N. Filipovic, & M. Zdravkovic (Eds.), Disruptive Information Technologies for a Smart Society (pp. 362–374). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-50755-7_34

Doljak, D., & Samardzija, D. (2016). The potential of massive PV installation in Serbia. In V. Martínez & J. González (Eds.), Proceedings of the ISES EuroSun 2016 Conference (pp. 1656-1663). International Solar Energy Society. https://proceedings.ises.org/conference/eurosun2016/EuroSun2016-Proceedings.pdf

Đurišić, Ž., & Škrbić, B. (2022). Potencijal energije sunca i vetra za strateško planiranјe dekarbonizacije proizvodnјe električne energije u Srbiji [Solar and Wind Energy Potential for Strategic Planning of Decarbonisation of Electricity Production in Serbia]. Energija, ekonomija, ekologija, 24(4), 1–11. https://doi.org/10.46793/EEE22-4.01D

eKapija. (2022, June 23). Sa krovova možemo da dobijemo 6 GW - Ekspanzija interesovanja za solarne elektrane u Srbiji [We can get 6 GW from rooftops - Expansion of interest in solar power plants in Serbia]. eKapija. https://www.ekapija.com/news/3743893/sa-krovova-mozemo-da-dobijemo-6-gw-ekspanzija-interesovanja-za-solarne-elektrane

eKapija. (2025, January 27). Pirot novim softverskim rešenjem povezuje solarne elektrane na teritoriji grada [Pirot uses a new software solution to connect solar power plants in the city]. eKapija https://www.ekapija.com/news/5042946/pirot-novim-softverskim-resenjem-povezuje-solarne-elektrane-na-teritoriji-grada

Elektrodistribucija Srbije. (2023). Zakon o korišćenju obnovljivih izovra energije ("Službeni glasnik RS" broj 40 od 22. aprila 2021., 35 od 29. aprila 2023.): Spisak svih podnetih zahteva u postupku priključenja [Law on the use of renewable energy sources ("Official Gazette of RS" No. 40 of April 22, 2021, 35 of April 29, 2023): List of all submitted requests in the accession procedure]. https://elektrodistribucija.rs/usluge/postupak-prikljucenja-na-dsee/postupak-sticanja-statusa-kupca-proizvodjaca/dokumenta/spisak%20podnetih%20zahteva%20u%20postupku%20prikljucenja%20OIE%2031.07.pdf

Elektrodistribucija Srbije. (2025a). Registar priključenih elektrana koje koriste obnovljive izvore energije (Datum poslednjeg ažuriranja: 15. 01. 2025) [Register of connected power plants that use renewable energy sources (Last updated date: January 15, 2025)]. https://elektrodistribucija.rs/pdf/ELEKTRANE.pdf

Elektrodistribucija Srbije. (2025b). Registar kupaca - proizvođača: Кupac-proizvođač koji je domaćinstvo (Datum poslednjeg ažuriranja: 20. 2. 2025) [Prosumer Registry: Households (Last updated date: February 20, 2025)]. Retrieved February 25, 2025, from https://elektrodistribucija.rs/pdf/DOMACINSTVA.pdf

Elektrodistribucija Srbije. (2025c). Registar kupaca - proizvođača: Кupac-proizvođač koji je stambena zajednica (Datum poslednjeg ažuriranja: 05. 02. 2025) [Prosumer Registry: Residential communities (Last updated date: February 5, 2025)]. Retrieved February 25, 2025, from https://elektrodistribucija.rs/pdf/DOMACINSTVA.pdf

Elektrodistribucija Srbije. (2025d). Registar kupaca - proizvođača: Кupac-proizvođač koji nije domaćinstvo ili stambena zajednica (Datum poslednjeg ažuriranja: 14. 2. 2025) [Prosumer Registry: Prosumer who is not a household or residential communities (Last updated date: February 14, 2025)]. Retrieved February 25, 2025, from https://elektrodistribucija.rs/pdf/DOMACINSTVA.pdf

Elektropionir. (n.d.). Elektrane Solarna Stara [Solarna Stara power plants]. https://elektropionir.rs/elektrane-solarna-stara/

Elektroprivreda Srbije. (2015–2024). Izveštaji [Reports; Dataset]. https://www.eps.rs/lat/snabdevanje/Stranice/izvestaji-oie.aspx

European Parliament, Council of the European Union. (2023). Directive (EU) 2023/2413 of the European Parliament and of the Council of 18 October 2023 amending Directive (EU) 2018/2001, Regulation (EU) 2018/1999 and Directive 98/70/EC as regards the promotion of energy from renewable sources, and repealing Council Directive (EU) 2015/652. http://data.europa.eu/eli/dir/2023/2413/oj

Gagnon, P., Margolis, R., Melius, J., Phillips, C., & Elmore, R. (2016). Rooftop Solar Photovoltaic Technical Potential in the United States: A Detailed Assessment (No. NREL/TP-6A20-65298). National Renewable Energy Laboratory. https://doi.org/10.2172/1236153

Gernaat, D. E., de Boer, H. S., Dammeier, L. C., & van Vuuren, D. P. (2020). The role of residential rooftop photovoltaic in long-term energy and climate scenarios. Applied Energy, 279, Article 115705. https://doi.org/10.1016/j.apenergy.2020.115705

Gómez-Exposito, A., Arcos-Vargas, A., & Gutierrez-Garcia, F. (2020). On the potential contribution of rooftop PV to a sustainable electricity mix: The case of Spain. Renewable and Sustainable Energy Reviews, 132, Article 110074. https://doi.org/10.1016/j.rser.2020.110074

Gómez-Navarro, T., Brazzini, T., Alfonso-Solar, D., & Vargas-Salgado, C. (2021). Analysis of the potential for PV rooftop prosumer production: Technical, economic and environmental assessment for the city of Valencia (Spain). Renewable Energy, 174, 372–381. https://doi.org/10.1016/j.renene.2021.04.049

Google. (n.d.). Google Earth Engine [Computing Platform]. https://earthengine.google.com/platform/

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031

Government of the Republic of Serbia, Minister of Mining and Energy. (2025). Integrated National Energy and Climate Plan of the Republic of Serbia for the period up to 2030 with a vision to 2050. https://www.mre.gov.rs/extfile/sr/8694/ADOPTED%20NECP.pdf

Gradska uprava Vranje. (2022). Solarni potencijal grada Vranja [Solar potential of the city of Vranje; Data set]. https://data.gov.rs/sr/datasets/solarni-potentsijal-grada-vranja/

Hofierka, J., & Kaňuk, J. (2009). Assessment of photovoltaic potential in urban areas using open-source solar radiation tools. Renewable Energy, 34(10), 2206–2214. https://doi.org/10.1016/j.renene.2009.02.021

Institute for Multidisciplinary Research. (2004). Studija energetsкog potencijala Srbije za кorišćenje sunčevog zračenja i energije vetra [Study of the Energy Potential of Serbia for the Use of Solar and Wind Energy] (NPEE, Registration Number EE704-1052A). Retrieved March 31, 2025 from http://vetar-sunce.imsi.rs/tekstovi/Studija_EE704-1052A/index.php

International Renewable Energy Agency. (2024). Renewable energy statistics 2024. https://www.irena.org//media/Files/IRENA/Agency/Publication/2024/Jul/IRENA_Renewable_Energy_Statistics_2024.pdf

Izquierdo, S., Rodrigues, M., & Fueyo, N. (2008). A method for estimating the geographical distribution of the available roof surface area for large-scale photovoltaic energy-potential evaluations. Solar Energy, 82(10), 929–939. https://doi.org/10.1016/j.solener.2008.03.007

Jacobson, M. Z., Delucchi, M. A., Bauer, Z. A., Goodman, S. C., Chapman, W. E., Cameron, M. A., Bozonnat, C., Chobadi, L., Clonts, H. A., Enevoldsen, P., Erwin, J. R., Fobi, S. N., Goldstrom, O. K., Hennessy, E. M., Liu, J., Lo, J., Meyer, C. B., Morris, S. B., Moy, K. R., . . . Yachanin, A. S. (2017). 100% Clean and Renewable Wind, Water, and Sunlight All-Sector Energy Roadmaps for 139 countries of the world [Supplemental Information]. Joule, 1(1), 108–121. https://doi.org/10.1016/j.joule.2017.07.005

Joshi, S., Mittal, S., Holloway, P., Shukla, P. R., Ó Gallachóir, B., & Glynn, J. (2021). High resolution global spatiotemporal assessment of rooftop solar photovoltaics potential for renewable electricity generation. Nature Communications, 12(1), Article 5738. https://doi.org/10.1038/s41467-021-25720-2

JP Zavod za urbanizam Vranje. (2018). Prostorni plan Grada Vranja [Spatial Plan of the City of Vranje]. https://www.urbanizamvr.rs/images/mojPDF/Prostorni_plan_grada_Vranja.pdf

Law on the Use of Renewable Energy Sources, Official Gazette of the Republic of Serbia, No. 40/2021-23, 35/2023-79, 94/2024-204 (other law) (2024). https://pravno-informacioni-sistem.rs/eli/rep/sgrs/skupstina/zakon/2021/40/2/20241206

Li, Q., Krapf, S., Mou, L., Shi, Y., & Zhu, X. X. (2024). Deep learning-based framework for city-scale rooftop solar potential estimation by considering roof superstructures. Applied Energy, 374, Article 123839. https://doi.org/10.1016/j.apenergy.2024.123839

Long, Y., Xu, X., & Huo, Z. (2025). Urban rooftop photovoltaic potential model: A study on assessment methods and model framework. Energy and Buildings, 345, Article 116138. https://doi.org/10.1016/j.enbuild.2025.116138

Mainzer, K., Fath, K., McKenna, R., Stengel, J., Fichtner, W., & Schultmann, F. (2014). A high-resolution determination of the technical potential for residential-roof-mounted photovoltaic systems in Germany. Solar Energy, 105, 715–731. https://doi.org/10.1016/j.solener.2014.04.015

McKenna, R., Mulalic, I., Soutar, I., Weinand, J. M., Price, J., Petrović, S., & Mainzer, K. (2022). Exploring trade-offs between landscape impact, land use and resource quality for onshore variable renewable energy: an application to Great Britain. Energy, 250, Article 123754. https://doi.org/10.1016/j.energy.2022.123754

Microsoft. (2022). Global ML Building Footprints [Dataset]. https://gee-community-catalog.org/projects/msbuildings/

Milovanović, B., Radovanović, M., Stanojević, G., Pecelj, M., & Nikolić, J. (2017). Klima Srbije [Climate of Serbia]. In M. Radovanović (Ed.), Geografija Srbije (Posebna izdanja, Knjiga 91) [Geography of Serbia (Special issues, Book 91)] (pp. 94–156). Geografski institut „Jovan Cvijić“ SANU.

Milovanović, B., Takara, K., Radovanović, M., Milivojević, M., & Jovanović, J. M. (2023). Frequency Analysis of Absolute Maximum Air Temperatures in Serbia. Journal of the Geographical Institute “Jovan Cvijić” SASA, 73(3), 279–293. https://doi.org/10.2298/IJGI2303279M

Molnár, G., Cabeza, L. F., Chatterjee, S., & Ürge-Vorsatz, D. (2024). Modelling the building-related photovoltaic power production potential in the light of the EU's Solar Rooftop Initiative. Applied Energy, 360, Article 122708. https://doi.org/10.1016/j.apenergy.2024.122708

Molnár, G., Ürge-Vorsatz, D., & Chatterjee, S. (2022). Estimating the global technical potential of building-integrated solar energy production using a high-resolution geospatial model. Journal of Cleaner Production, 375, Article 134133. https://doi.org/10.1016/j.jclepro.2022.134133

Nenković-Riznić, M., Brankov, B., Pucar, M., & Stanojević, A. (2023). The Role of the Buyer-Producer (Prosumer) in the Implementation of RES in Serbia: Obstacles and Opportunities. In M. Vlahović (Ed.), Proceedings of 11th International Conference on Renewable Electrical Power Sources (pp. 147–157). SMEITS. https://hdl.handle.net/21.15107/rcub_raumplan_896

Peštan. (n.d.). Gradimo svet jačajući ga za buduća pokolenja [We build the world by strengthening it for future generations]. https://pestan.net/sr/drustveno-odgovorno-poslovanje/

Protić, D., Kilibarda, M., Nenkovic-Riznic, M., & Nestorov, I. (2017). Three-dimensional urban solar potential maps: Case study of the i-Scope Project. Thermal Science, 22(1 Part B), 663–673. https://doi.org/10.2298/tsci170715213p

Pucar, M., & Nenković Riznić, M. (2009). Strategija prostornog razvoja Republike Srbije: Studijsko-analitička osnova. Tematska sveska: Prostorni i ekološki aspekti korišćenja obnovljivih izvora energije [Spatial development strategy of the Republic of Serbia: Study and analytical basis. Thematic notebook: Spatial and ecological aspects of the use of renewable energy sources]. Institut za arhitekturu i urbanizam Srbije.

QGIS (Version 3.16.) [Computer software]. (2020). https://qgis.org/

Republic Geodetic Authority. (n.d.). GeoSrbija otvoreni podaci [GeoSrbija open data; Dataset]. https://opendata.geosrbija.rs/loginopendata

RES Foundation. (2021). Sve što ste hteli da znate o energetskom siromaštvu u Srbiji 2021 [All you wanted to know about energy poverty in Serbia in 2021]. https://www.resfoundation.org/wp-content/uploads/2021/09/Sve-sto-ste-hteli-da-znate-o-energetskom-siromastvu-u-Srbiji.pdf

Smil, V. (2015). Power Density: A Key to Understanding Energy Sources and Uses. The MIT Press. https://doi.org/10.7551/mitpress/10046.001.0001

Solargis. (2024). Global Solar Atlas (Version 2.11) [Dataset]. https://globalsolaratlas.info/download

Spasić, V. (2024, November 20). Solar u Srbiji dostigao 166 MW, cifre se menjaju na dnevnom nivou [Serbia’s solar capacity at 166 MW and rising]. Balkan Green Energy News. https://balkangreenenergynews.com/serbias-solar-capacity-at-166-mw-and-rising/

Spasić, V. (2023, Jun 12). Pirot grabi ka tituli grad sunca u Srbiji [Pirot on track to become Serbia’s “city of sun”]. Balkan Green Energy News. https://balkangreenenergynews.com/rs/pirot-grabi-ka-tituli-grad-sunca-u-srbiji/https://balkangreenenergynews.com/rs/pirot-grabi-ka-tituli-grad-sunca-u-srbiji/

Stanojević, G., Malinović-Milićević, S., Brđanin, E., Milanović, M., Radovanović, M. M., & Popović, T. (2024). Impact of Domestic Heating on Air Pollution—Extreme Pollution Events in Serbia. Sustainability, 16(18), Article 7920. https://doi.org/10.3390/su16187920

Stanojević, G. B., Miljanović, D. N., Doljak, D. Lj., Ćurčić, N. B., Radovanović, M. M., Malinović-Milićević, S. B., & Hauriak, O. (2019). Spatio-Temporal Varilability of Annual PM2.5 Concentrations and Population Exposure Assessment in Serbia for the Period 2011–2016. Journal of the Geographical Institute “Jovan Cvijić” SASA, 69(3), 197–211. https://doi.org/10.2298/IJGI1903197S

Statistical Office of the Republic of Serbia. (2023). 2022 Census of Population, Households and Dwellings. https://stat.gov.rs/sr-latn/publikacije/publication/?p=15764&tip=4

Statistical Office of the Republic of Serbia. (2024a). Statistical Yearbook оf the Republic of Serbia, 2024. https://publikacije.stat.gov.rs/G2024/Pdf/G20242057.pdf

Statistical Office of the Republic of Serbia. (2024b). 2022 Census of Population, Households and Dwellings. https://publikacije.stat.gov.rs/G2024/Pdf/G20244002.pdf

Statistical Office of the Republic of Serbia. (2024c). Poverty and Social Inequality, 2023 (Statistical Release). https://www.stat.gov.rs/en-US/vesti/statisticalrelease/?p=15328

Statistical Office of the Republic of Serbia. (2024d). Household Budget Survey, 2023. https://publikacije.stat.gov.rs/G2024/Pdf/G20245710.pdf

Statistical Office of the Republic of Serbia. (2025). Bulletin – Energy balances, 2023. https://www.stat.gov.rs/sr-latn/publikacije/publication/?p=17175&tip=5

Stojkov, B. (2011). Prostorni plan Republike Srbije : 2010–2020 [Spatial Plan of the Republic of Serbia : 2010–2020]. Republička agencija za prostorno planiranje.

Sunčani krovovi Šabac. (n.d.). https://www.suncanikrovovi.rs/

Srećković, N., Lukač, N., Žalik, B., & Štumberger, G. (2016). Determining roof surfaces suitable for the installation of PV (photovoltaic) systems, based on LiDAR (Light Detection And Ranging) data, pyranometer measurements, and distribution network configuration. Energy, 96, 404–414. https://doi.org/10.1016/j.energy.2015.12.078

UNDP Serbia. (2023, February 24). Solarna elektrana u okviru fabrike Toyo Tire Srbija [Solar power plant within the Toyo Tire Serbia factory]. https://www.youtube.com/watch?v=xLX2pfoOOyo

United Nations. (1999). Resolution 1244 (1999). https://unmik.unmissions.org/sites/default/files/old_dnn/Res1244ENG.pdf

Uredba o nomenklaturi statističkih teritorijalnih jedinica [Regulation on the Nomenclature of Statistical Territorial Units]. Službeni glasnik Republike Srbije, br. 109 (2009); 46 (2010).

Vuksanović-Macura, Z. (2021). Analiza održivih modela za obezbeđivanje pristupa čistoj pijaćoj vodi, kanalizaciji i električnoj energiji stanovnicima i stanovnicama podstandardnih romskih naselja u Republici Srbiji [Analysis of sustainable models for providing access to clean drinking water, sewage and electricity to residents of substandard Roma settlements in the Republic of Serbia]. https://socijalnoukljucivanje.gov.rs/wp-content/uploads/2021/12/Analiza_odrzivih_modela_za_obezbedjivanje_pristupa_cistoj_pijacoj_vodi_kanalizaciji_i_elektricnoj_energiji_stanovnicima_podstandardnih_romskih_naselja.pdf

Walch, A., Castello, R., Mohajeri, N., & Scartezzini, J. L. (2020). Big data mining for the estimation of hourly rooftop photovoltaic potential and its uncertainty. Applied Energy, 262, Article 114404. https://doi.org/10.1016/j.apenergy.2019.114404

Winkler, C., Dabrock, K., Kapustyan, S., Hart, C., Heinrichs, H., Weinand, J. M., Linßen, J., & Stolten, D. (2025). High-Resolution rooftop photovoltaic potential assessment for a resilient energy system in Ukraine. Energy Conversion and Management: X, 28, Article 101242. https://doi.org/10.1016/j.ecmx.2025.101242

Wu, G. C., Deshmukh, R., Ndhlukula, K., Radojicic, T., Reilly-Moman, J., Phadke, A., Kammen, D. M., & Callaway, D. S. (2017). Strategic siting and regional grid interconnections key to low-carbon futures in African countries. Proceedings of the National Academy of Sciences, 114(15), E3004–E3012. https://doi.org/10.1073/pnas.1611845114

Yeligeti, M., Hu, W., Scholz, Y., Stegen, R., & von Krbek, K. (2023). Cropland and rooftops: the global undertapped potential for solar photovoltaics. Environmental Research Letters, 18(5), Article 054027. https://doi.org/10.1088/1748-9326/accc47

Zhang, Z., Qian, Z., Chen, M., Zhu, R., Zhang, F., Zhong, T., Lin, J., Ning, L., Xie, W., Creutzig, F., Tang, W., Liu, L., Yang, J., Pu, Y., Cai, W., Pu, Y., Liu, D., Yang, H., Su, H., … Yan, J. (2025). Worldwide rooftop photovoltaic electricity generation may mitigate global warming. Nature Climate Change, 1–10. https://doi.org/10.1038/s41558-025-02276-3

Downloads

Published

2026-02-19

How to Cite

Doljak, D., Batas Bjelić, I., & Dedinec, A. (2026). GEOSPATIAL ESTIMATION OF ROOFTOP SOLAR PHOTOVOLTAIC TECHNICAL POTENTIAL IN SERBIA. Journal of the Geographical Institute “Jovan Cvijić” SASA, 76(1), 37–54. https://doi.org/10.2298/IJGI250519020D

Similar Articles

<< < 5 6 7 8 9 10 11 12 13 14 15 16 17 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)