LONG-TERM EFFECT OF WARMING-INDUCED PERMAFROST THAWING ON TUNDRA VEGETATION—THE EVIDENCE FROM THE CHUKCHI PENINSULA (RUSSIAN NORTHEAST)

Authors

DOI:

https://doi.org/10.2298/IJGI2403291M

Keywords:

tundra, permafrost, climate change, Arctic, Chukotka

Abstract

Tundra is one of the most sensitive environments of the world in relation to climate changes, since its ecosystems exist close to the limits of plant community tolerance. Besides, tundra vegetation in most of Arctic regions resides on permafrost, which is thermally unstable media. Thus, vegetation and frozen soils are extremely vulnerable to external impacts and are balancing in fragile thermodynamic equilibrium. Thermal and moisture regime shifting lead to changing of thermophysical properties of vegetation cover and thus, the thermal balance of underlying permafrost. In this study we present the results of 2001–2024 in-situ monitoring of vegetation cover and permafrost conditions in remote region of the Chukchi Peninsula, Russian Northeast. The study combines the yearly data on active layer thickness and vegetation cover from two sites of Circumpolar Active Layer Monitoring (CALM) program located within the key site of Eastern Chukotka Coastal Plains (ECCP). The study reveals long-term trajectories of climate, permafrost, and vegetation cover characteristics. Although common biological productivity was growing and active layer was thickening, the particular plant species respond to these changes differently. On sloping plots, the increasing of active layer thickness (ALT) led to correspondent lowering of the permafrost table, drainage of thawing ice and thus, soil drying, which caused the decrease in moss and sedge covers. Meanwhile, within flat poorly-drained surfaces the permafrost thawing contributes to soil moisture with correspondent sedge expansion. Thermokarst-affected terrain triggers the growth of tundra vegetation bioproductivity and serves as a shelter for plants from Arctic winds and facilitates higher snow accumulation.

Article metrics

References

Abramov, A., Davydov, S., Ivashchenko, A., Karelin, D., Kholodov, A., Kraev, G., Lupachev, A., Maslakov, A., Ostroumov, V., Rivkina, E., Shmelev, D., Sorokovikov, V., Tregubov, O., Veremeeva, A., Zamolodchikov, D., & Zimov, S. (2021). Two decades of active layer thickness monitoring in northeastern Asia. Polar Geography, 44(3), 186–202. https://doi.org/10.1080/1088937X.2019.1648581

AISPRI. (2024). Specializirovannyi massivy dlya klimaticheskih issledovanij [Automated Information System for Processing Regime Information, Data set]. http://aisori-m.meteo.ru/waisori/index.xhtml?idata=19

Anisimov, O. A., Zhiltsova, E. L., & Reneva, S. A. (2011). Estimation of critical levels of climate change influence on the natural terrestrial ecosystems on the territory of Russia. Russian Meteorology and Hydrology, 36, 723–730. https://doi.org/10.3103/S1068373911110033

Anisimov, O. A., Zhirkov, A. F., & Sherstyukov, A. B. (2015). Sovremennyye izmeneniya kriosfery i prirodnoy sredy v Arktike [Current changes in cryosphere and environment in the Arctic]. Arctic XXI century, 2(3), 24–47. https://cyberleninka.ru/article/n/sovremennye-izmeneniya-kriosfery-i-prirodnoy-sredy-v-arktike

Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G., Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G., Abramov, A., Allard, A., Boike, J., Cable, W. L., Christiansen, H. H., Delaloye, R., Diekmann, B., Drozdov, D., Etzelmuller, B., Grosse, G., . . . Lantuit, H. (2019). Permafrost is warming at a global scale. Nature Communications, 10(1), Article 264. https://doi.org/10.1038/s41467-018-08240-4

Bhatt, U. S., Walker, D. A., Raynolds, M. K., Bieniek, P. A., Epstein, H. E., Comiso, J. C., Pinzon, J. E., Tucker, C. J., & Polyakov, I. V. (2013). Recent Declines in Warming and Vegetation Greening Trends over Pan-Arctic Tundra. Remote Sensing, 5(9), 4229–4254. https://doi.org/10.3390/rs5094229

Brown, J., Hinkel, K. M., & Nelson, F. E. (2000). The circumpolar active layer monitoring (CALM) program: research designs and initial results. Polar Geography, 24(3), 166–258. https://doi.org/10.1080/10889370009377698

Christiansen, H. H. (2004). Meteorological control on interannual spatial and temporal variations in snow cover and ground thawing in two northeast Greenlandic Circumpolar-Active-Layer-Monitoring (CALM) sites. Permafrost and Periglacial Processes, 15(2), 155–169. https://doi.org/10.1002/ppp.489

Druel, A., Peylin, P., Krinner, G., Ciais, P., Viovy, N., Peregon, A., Bastrikov, V., Kosykh, N., & Mironycheva-Tokareva, N. (2017). Towards a more detailed representation of high-latitude vegetation in the global land surface model ORCHIDEE (ORC-HL-VEGv1.0). Geoscientific Model Development, 10(12), 4693–4722. https://doi.org/10.5194/gmd-2017-65

Ermokhina, K. A., & Myalo, E. G. (2013). Fitoindikacionnoe kartografirovanie opolznevyh narushenij na Central’nom Yamale [Phytoindication mapping of landslide disturbances in the Central Yamal]. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya, 5, 139–146. https://izvestia.igras.ru/jour/article/view/99

Guo, W. C., Liu, H. Y., Anenkhonov, O. A., Shangguan, H., Sandalov, D. V., Korolyuk, A. Y., Hu, G., & Wu, X. (2018). Vegetation can strongly regulate permafrost degradation at its southern edge through changing surface freeze-thaw processes. Agricultural and Forest Meteorology, 252, 10–17. https://doi.org/10.1016/j.agrformet.2018.01.010

Heijmans, M. M. P. D., Magnússon, R. Í., Lara, M. J., Frost, G. V., Myers-Smith, I. H., van Huissteden, J., Jorgenson, M. T., Fedorov, A. N., Epstein, H. E., Lawrence, D. M., & Limpens, J. (2022). Tundra vegetation change and impacts on permafrost. Nature Reviews Earth & Environment, 3, 68–84. https://doi.org/10.1038/s43017-021-00233-0

IPCC (2023). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC. https://doi.org/10.59327/IPCC/AR6-9789291691647

Farquharson, L. M., Romanovsky, V. E., Cable, W. L., Walker, D. A., Kokelj, S. V., & Nicolsky, D. (2019). Climate Change Drives Widespread and Rapid Thermokarst Development in Very Cold Permafrost in the Canadian High Arctic. Geophysical Research Letters, 46(12), 6681–6689. https://doi.org/|10.1029/2019GL082187

Frost, G. V., Epstein, H. E., Walker, D. A., Matyshak, G., & Ermokhina, K. (2018). Seasonal and Long-Term Changes to Active-Layer Temperatures after Tall Shrubland Expansion and Succession in Arctic Tundra. Ecosystems, 21, 507–520. https://doi.org/10.1007/s10021-017-0165-5

Kaverin, D., Malkova, G., Zamolodchikov, D., Shiklomanov, N., Pastukhov, A., Novakovskiy, A., Sadurtdinov, M., Skvortsov, A., Tsarev, A., Pochikalov, A., Malitsky, S., & Kraev, G. (2021). Long-term active layer monitoring at CALM sites in the Russian European North. Polar Geography, 44, 203–216. https://doi.org/10.1080/1088937X.2021.1981476

Kolesnikov, S. F., & Plakht, I. R. (1989). Chukotskij rajon [Chukotka Area]. In A. I. Popov (Ed.), Regional'naya Kriolitologiya [Regional Cryolithology] (pp. 201–217). MGU.

Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263. https://doi.org/10.1127/0941-2948/2006/0130

Laberge, M.-J., & Payette S. (1995). Long-Term Monitoring of Permafrost Change in a Palsa Peatland in Northern Quebec, Canada: 1983–1993. Arctic and Alpine Research, 27(2), 167–171. https://doi.org/10.2307/1551898

Liston, G. E., McFadden, J. P., Sturm, M., & Pielke, R. A. (2002). Modelled changes in arctic tundra snow, energy and moisture fluxes due to increased shrubs. Global Change Biology, 8(1), 17–32. https://doi.org/10.1046/j.1354-1013.2001.00416.x

Liu, Z., He, D., Shi, Q., & Cheng, X. (2024). NDVI time-series data reconstruction for spatial-temporal dynamic monitoring of Arctic vegetation structure. Geo-spatial Information Science, 1–19. https://doi.org/10.1080/10095020.2024.2336602

Lloyd, A. H., Yoshikawa, K., Fastie, C. L., Hinzman, L., & Fraver, M. (2003). Effects of permafrost degradation on woody vegetation at arctic treeline on the Seward Peninsula, Alaska. Permafrost and Periglacial Processes, 14(2), 93–101. https://doi.org/10.1002/ppp.446

Lobotrosova, S. A., Soromotin, A. V., Sizov, O. S., & Safonov, Y. S. (2018). Rastitel`nye soobshhestva eolovyh form rel`efa severnoj tajgi Zapadnoj sibiri i rekomendacii k rekul`tivacii ogolennyh peskov [Plant Communities of Aeolian Landforms of the Northern Taiga of Western Siberia and Recommendations for the Reclamation of Bare Sands]. Man and the North. In Proceedings of the XXI All-Russian Scientific and Practical Conference (pp. 531–535). Pechatnik.

Maslakov, A. A., Egorov, E. G., Zelensky, G. M., Vasil’chuk, Y. K., & Budantseva, N. A. (2021, June 14–18). The Transient Layer of Permafrost of the Eastern Chukotka Coastal Plains, NE Russia. Proceedings of the 26th International Conference on Port and Ocean Engineering under Arctic Conditions. Moscow, Russia. https://www.poac.com/Proceedings/2021/POAC21-049.pdf

Maslakov, A. A., Nyland, K. E., Komova, N. N., Yurov, F. D., Yoshikawa, K., & Kraev, G. N. (2020). Community Ice Cellars In Eastern Chukotka: Climatic And Anthropogenic Influences On Structural Stability. Geography, Environment, Sustainability, 13(3), 49–56. https://doi.org/10.24057/2071-9388-2020-71

Maslakov, A., Shabanova, N., Zamolodchikov, D., Volobuev, V., & Kraev, G. (2019). Permafrost Degradation within Eastern Chukotka CALM Sites in the 21st Century Based on CMIP5 Climate Models. Geosciences, 9(5), Article 232. https://doi.org/10.3390/geosciences9050232

Maslakov, A., Zotova, L., Komova, N., Grishchenko, M., Zamolodchikov, D., & Zelensky, G. (2021). Vulnerability of the Permafrost Landscapes in the Eastern Chukotka Coastal Plains to Human Impact and Climate Change. Land, 10(5), Article 445. https://doi.org/10.3390/land10050445

Mikhailov, I. S. (2020). Changes in the soil-plant cover of the high Arctic of Eastern Siberia. Eurasian Soil Science, 53(6), 715–723. https://doi.org/10.1134/S1064229320060083

Moskalenko, N. G., Jorgenson, T., Kanevsky, M., Nossov, D., & Shur, Yu L. (2014). Vzaimosvyazi rastitel’nosti i sezonnogo protaivaniya mnogoletnemerzlyh porod v arcticheskyx tundrah Yamala I Alyaski [The comparative analysis of vegetation and permafrost in arctic tundras of Yamal and Alaska]. Proceedings of the Russian Geographical Society, 146(3), 64–79. https://izv.rgo.ru/jour/article/view/396/214

Myers-Smith, I. H., Hik, D. S., Kennedy, C., Cooley, D., Johnstone, J. F., Kenney, A. J., & Kreb, C. J. (2011). Expansion of Canopy-Forming Willows Over the Twentieth Century on Herschel Island, Yukon Territory, Canada. AMBIO, 40(6), 610–623. https://doi.org/10.1007/s13280-011-0168-y

Nelson, F. E., & Outcalt, S. I. (1987). A Computational Method for Prediction and Regionalization of Permafrost. Arctic and Alpine Research, 19(3), 279–288. https://doi.org/10.1080/00040851.1987.12002602

Noetzli, J., Christiansen, H., Hrbáček, F., Hu, G., Isaksen, K., Magnin, F., Pogliotti, P., Smith, S. L., Zhao, L., & Streletskiy, D. A. (2023). Permafrost temperature and active layer thickness. Bulletin of the American Meteorological Society, 104(9), 39–41. https://doi.org/10.1175/2023BAMSStateoftheClimate.1

O’Neill, H., Smith, S. L., Burn, C., Duchesne, C., & Zhang, Y. (2023). Widespread Permafrost Degradation and Thaw Subsidence in Northwest Canada. Journal of Geophysical Research: Earth Surface, 128(8), Article e2023JF007262. https://doi.org/10.1029/2023JF007262

Painter, S. L., Coon, E. T., Khattak, A. J., & Jastrow, J. D. (2023). Drying of tundra landscapes will limit subsidence-induced acceleration of permafrost thaw. Proceedings of the National Academy of Sciences of the United States of America, 120(8), Article e2212171120. https://doi.org/10.1073/pnas.2212171120

Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja, K., Vihma, T., & Laaksonen, A. (2022). The Arctic has warmed nearly four times faster than the globe since 1979. Communications Earth & Environment, 3, Article 168. https://doi.org/10.1038/s43247-022-00498-3

Raynolds, M. K., Walker, D. A., Balser, A., Bay, C., Campbell, M., Cherosov, M. M., Daniëls, F. J., Eidesen, P. K., Ermokhina, K. A., Frost, G. V., Jedrzejek, B., Jorgenson, M. T., Kennedy, B. E., Kholod, S. S., Lavrinenko, I. A., Lavrinenko, O. V., Magnússon, B., Matveyeva, N. V., Metúsalemsson, S., . . . Troeva, E. (2019). A Raster Version of the Circumpolar Arctic Vegetation Map (CAVM). Remote Sensing of Environment, 232, Article 111297. https://doi.org/10.1016/j.rse.2019.111297

Stow, D. A., Hope, A., McGuire, D., Verbyla, D., Gamon, J., Huemmrich, F., Houston, S., Racine, C., Sturm, M., Tape, K., Hinzman, L., Yoshikawa, K., Tweedie, C., Noyle, B., Silapaswan, C., Douglas., D., Griffith, B., Jia, G., Epstein, H., . . . & Myneni, R. (2004). Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems. Remote Sensing of Environment, 89(3), 281–308. https://doi.org/10.1016/j.rse.2003.10.018

Strand, S. M., Christiansen, H. H., Johansson, M., Åkerman, J., & Humlum, O. (2021). Active layer thickening and controls on interannual variability in the Nordic Arctic compared to the circum‐Arctic. Permafrost and Periglacial Processes, 32(1), 47–58. https://doi.org/10.1002/ppp.2088

Tishkov, A. A., & Krenke, A. N. (2015). “Pozelenenie” Arktiki v XXI veke kak effekt sinergizma dejstviya global`nogo potepleniya i xozyajstvennogo osvoeniya [“Greening” of the Arctic in the twenty-first century as a synergy effect of global warming and economic development]. Arctic: Ecology and Economy, 20(4), 28–37. https://shorturl.at/ZuJUE

Tishkov, A. A., Osokin, N. I., & Sosnovsky, A. V. (2013). Vliyanie sinuzij moxoobraznyh na deyatel’nyj sloj arcticheskyh pochv [The Impact of Moss Synusia on the Active Layer of Arctic Soil and Subsoil]. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya, 3, 39–47. https://doi.org/10.15356/0373-2444-2013-3-39-46

Titkova, T. B., & Vinogradova, V. V. (2015). Otklik rastitel`nosti na izmenenie klimaticheskih uslovij v boreal`nyh i subarkticheskih landshaftah v nachale XXI veka [The response of vegetation to climate change in boreal and subarctic landscapes at the beginning of the XXI century]. Current Problems in Remote Sensing of the Earth from Space, 12(3), 75–86. http://d33.infospace.ru/d33_conf/sb2015t3/75-86.pdf

Tyrtikov, A. P. (1969). Vliianie rastitelnogo pokrova na promerzanie i protaivanie gruntov [Influence of vegetation cover on freezing and thawing of soils]. Moscow University Press.

Valentini, R., Zamolodchikov, D., Reyer, C., Nose, S., Santini, M., & Lindren, M. (2020). Climate change in Russia — past, present and future. In P. Leskinen, M. Lindner, P. J. Verkerk, G.-J. Nabuurs, J. Van Brusselen, E. Kulikova, M. Hassegawa, & B. Lerink (Eds.), Russian forests and climate change. What science can tell us (pp. 45–52). European Forest Institute. https://doi.org/10.36333/wsctu11

Varlamova, E. V., & Soloviev, V. S. (2012). Monitoring rastitel`nogo pokrova arkticheskoj zony Vostochnoj Sibiri po sputnikovym dannym [Monitoring of vegetation cover of the Arctic zone of Eastern Siberia based on satellite data]. Nauka i obrazovanie, 2, 58–62. https://cyberleninka.ru/article/n/monitoring-rastitelnogo-pokrova-arkticheskoy-zony-vostochnoy-sibiri-po-sputnikovym-dannym

Vasil’chuk, Y. K., Maslakov, A. A., Budantseva, N. A., Vasil’chuk, A. C., & Komova, N. N. (2021). Isotope Signature Of The Massive Ice Bodies On The Northeast Coast Of Chukotka Peninsula. Geography, Environment, Sustainability, 4(14), 9–19. https://doi.org/10.24057/2071-9388-2021-020

Wang, Z., Xiao, M., Nicolsky, D., Romanovsky, V., McComb, C., & Farquharson, L. (2023). Arctic coastal hazard assessment considering permafrost thaw subsidence, coastal erosion, and flooding. Environmental Research Letters, 18(10), Article 104003. https://doi.org/10.1088/1748-9326/acf4ac

Yang, Y., Wang, X., & Wang, T. (2024). Permafrost Degradation Induces the Abrupt Changes of Vegetation NDVI in the Northern Hemisphere. Earth's Future, 12(10), Article e2023EF004309. https://doi.org/10.1029/2023EF004309

Zamolodchikov, D. G., Kotov, A. N., Karelin, D. V., & Razzhivin, V. Y. (2004). Active-Layer Monitoring in Northeast Russia: Spatial, Seasonal, and Interannual Variability. Polar Geography, 28(4), 286–307. https://doi.org/10.1080/789610207

Zhiltsova, E. L., & Anisimov, O. A. (2013). Empiriko-statisticheskoe modelirovanie rastitel`noj zonal`nosti v usloviyah izmeneniya klimata na territorii Rossii [Empirico-statistical modeling of vegetation zonation under climate change in Russia]. Problems of Ecological Monitoring and Ecosystems Modeling, 25, 360–374. https://www.rosih.ru/shop/1451091132.pdf

Downloads

Published

2024-12-20

How to Cite

Maslakov, A., Grishchenko, M., Grigoryan, A., & Zamolodchikov, D. (2024). LONG-TERM EFFECT OF WARMING-INDUCED PERMAFROST THAWING ON TUNDRA VEGETATION—THE EVIDENCE FROM THE CHUKCHI PENINSULA (RUSSIAN NORTHEAST) . Journal of the Geographical Institute “Jovan Cvijić” SASA, 74(3), 291–309. https://doi.org/10.2298/IJGI2403291M

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.