THE CURRENT CHEMICAL COMPOSITION OF INLAND WATER BODIES OF THE VOLGA-AKHTUBA FLOODPLAIN (RUSSIA)

Authors

DOI:

https://doi.org/10.2298/IJGI240312009M

Keywords:

chemical composition, shallow channels, bottom sediments, Volga-Akhtuba floodplain, biosphere reserve

Abstract

The problem of clean water is one of the most important environmental problems in the world. It is impossible to prevent the occurrence of adverse environmental situations without careful monitoring of the aquatic ecosystems state. The assessment of the current chemical composition of the Volga-Akhtuba floodplain shallow channels (Peschanyj, Dudak, and Dudachenok) in the water-bottom sediments system was carried out. Studied shallow channels dried out during the summer-autumn low-water period for the last few decades. Studies were carried out after the clearance and ecological rehabilitation of the shallow channels. It was found that almost all the studied indicators in water samples correspond to the established quality standards. There is uneven distribution of heavy metals in the studied shallow channels. It can be caused by the influence of hydrodynamic conditions, changes in water and sediment flow, as well as local factors, including the catchment heterogeneous geology. The analysis of the metals content in bottom sediments with permissible ones made it possible to detect excess for Hg (0.18–0.75 mg/kg), Cd (1–2.12 mg/kg), Mn (370.8–493.3 mg/kg), Ni (2.6–67.9 mg/kg), Pb (14.3–22 mg/kg), Zn (75.2–147 mg/kg). The content of As (1–1.4 mg/kg) and Cu (8.54–28.7 mg/kg) in bottom sediments does not exceed the permissible concentrations. The obtained results will form the basis for a general comprehensive assessment of the clearance and ecological rehabilitation of the Volga-Akhtuba floodplain watercourses. It is necessary to continue monitoring the watercourses state and strengthen efforts to preserve the resilient ecosystem of the Volga-Akhtuba floodplain.

Article metrics

References

Advanced ESCC 2024. (n.d.). Third Global Summit on Advances in Earth Science and Climate Change. Advanced ESCC 2024. Retrieved January 23, 2024 from https://advanced-earth-climate-change.peersalleyconferences.com/

Alekin, O. A. (1953). Osnovy gidrohimii. Uchebnoe posobie dlya vuzov [Fundamentals of hydrochemistry. Textbook for universities]. Gidrometeoizdat.

Anokhina, O. K. (2004). Ekologicheskoe normirovanie soderzhaniya zagryaznyayushchih veshchestv v donnyh otlozheniyah Kujbyshevskogo vodohranilishcha [Environmental regulation of the pollutants content in bottom sediments of the Kuibyshev reservoir; Dissertation Abstract, Kazan Federal University]. Kazan Federal University Digital Repository. https://dspace.kpfu.ru/xmlui/handle/net/31762?show=full&locale-attribute=en

Balla, D., Zichar, M., Kiss, E., Szabó, G., & Mester, T. (2022). Possibilities for Assessment and Geovisualization of Spatial and Temporal Water Quality Data Using a WebGIS Application. ISPRS International Journal of Geo-Information, 11(2), Article 108. https://doi.org/10.3390/ijgi11020108

Belyaev, A. I., Istomin, A. P., Pugacheva, A. M., Zhikharev, A. G., Sukhov, A. A., & Arkov, D. P. (2021, September 20–25). Kompleks mer, napravlennyh na sohranenie unikal'noj ekosistemy Volgo-Ahtubinskoj pojmy na territorii Volgogradskoj oblasti [Complex measures aimed at the preservation of the unique ecosystem of the Volgo-Akhtub floodplain on the territory of the Volgograd region]. The All-Russian theoretical and practical conference with international participation “Trans boundary water bodies: use, management, conservation”, Sochi, Russia. https://rwec.ru/docs/events/conf2021/sbornik-2021.pdf

Belyaev, A. I., Pugacheva, A. M., & Korneeva, E. A. (2022). Assessment of Ecosystem Services of Wetlands of the Volga–Akhtuba Floodplain. Sustainability, 14(18), Article 11240. https://doi.org/10.3390/su141811240

Brekhovskikh, V. F., Ostrovskaya, E. V., Volkova, Z. V., Monakhov, S. K., Perekalsky, V. M., Abramov, N. N., Nemirovskaya, I. A., Savenko, A. V., Pokrovsky, O. S., Agatova, A. I., Lapina, N. M., Torgunova, N. I., Brezgunov, V. S., Petrova, N. V., Kurdina, L. V., Kurapov, A. A., Zubanov, S. A., & Nepomenko, L. F. (2017). Zagryaznyayushchie veshchestva v vodakh Volzhsko-Kaspiiskogo basseina [Pollutants in Water of the Volga–Caspian Basin]. Sorokin Roman Vasil’evich.

Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), Article e04691. https://doi.org/10.1016/j.heliyon.2020.e04691

Dauvalter, V. A. (2012). Geoekologiya donnyh otlozhenij ozer [Geoecology of lake bottom sediments]. MSTU Publishing House.

Ghafarifarsani, H., Rohani, M. F., Raeeszadeh, M., Ahani, S., Yousefi, M., Talebi, M., & Hossain, M. S. (2024). Pesticides and heavy metal toxicity in fish and possible remediation – a review. Annals of Animal Science. Ahead of print. https://doi.org/10.2478/aoas-2024-0012

Golinskaya, L. V. (2009). Ocenka soderzhaniya ryada metallov v donnyh otlozheniyah vodoemov vostochnogo Orenburzh'ya [Assessment of the content of a number of metals in bottom sediments of reservoirs in the eastern Orenburg region]. Vestnik of the Orenburg State University, 6(100), 558–559. http://vestnik.osu.ru/doc/1226/article/4637/lang/0

Golub, V. B., Chuvashov, A. V., Bondareva, V. V., Gerasimova, K. A., & Nikolaichuk, L. F. (2020). Changes in the Flora Composition of the Volga–Akhtuba Floodplain after Regulation of the Flow of Volga River. Arid Ecosystems, 10, 44–51. https://doi.org/10.1134/S2079096120010047

Google Earth (Version 10.52.0.0), Google Maxar Technologies Airbus. (2024). Retrieved May 4, 2024 from https://www.google.com/earth/about/versions/#earth-for-web

Gordeev, V. V. (2012). Geoximiya sistemy` reka-more [Geochemistry of the river-sea system]. IP Matushkina I.I.

Kablov, V. F., Kostin, V. E., & Sokolova, N. A. (2015). Volgo-Ahtubinskaya pojma. Ekologicheskaya situaciya: problemy i resheniya po ee uluchsheniy [Volga-Akhtuba floodplain. Ecological situation: problems and solutions for its improvement]. VSTU. https://volpi.ru/files/department/ekos/ecos_activity/monograph.pdf

Leummens, H. J. L. (2018). Volga River Delta (Russia). In C. M. Finlayson, G. R. Milton, R. C. Prentice, & N. C. Davidson (Eds.), The Wetland Book (pp. 945–958). Springer. https://doi.org/10.1007/978-94-007-4001-3_29

Li, Y., Li, Q., Jiao, S., Liu, C., Yang, L., Huang, G., Zhou, S., Han, M., & Brancelj, A. (2022). Water Quality Characteristics and Source Analysis of Pollutants in the Maotiao River Basin (SW China). Water, 14(3), Article 301. https://doi.org/10.3390/w14030301

Lychagin, M. Yu., Tkachenko, A. N., Kasimov, N. S., & Kroonenberg, S. B. (2015). Heavy Metals in the Water, Plants, and Bottom Sediments of the Volga River Mouth Area. Journal of Coastal Research, 31(4), 859–868. https://doi.org/10.2112/JCOASTRES-D-12-00194.1

Maaroof, B. F., Omran, M. H., Al-Qaim, F. F., Salman, J. M., Hussain, B. N., Abdellatif, M., Carnacina, I., Al-Hasani, B., Jawad, M. R., & Hussein, W. A. (2023). Environmental assessment of Al-Hillah River pollution at Babil Governorate (Iraq). Journal of the Geographical Institute “Jovan Cvijić” SASA, 73(1), 1–16. https://doi.org/10.2298/IJGI2301001M

MapChart. (2024). Russia map. MapChart. Retrieved May 4, 2024 from https://www.mapchart.net/russia.html

Maslov, A. V., Nemirovskaya, I. A., & Shevchenko, V. P. (2021). Distribution of Heavy Metals in Gray Silts in the Volga Cascade of Reservoirs. Water Resources, 48, 977–990. https://doi.org/10.1134/S0097807821060117

Mazzucato, M., Okonjo-Iweala, N., Rockström, J., & Shanmugaratnam, T. (2023). Turning the Tide: A Call to Collective Action. Global Commission on the Economics of Water. https://watercommission.org/publication/turning-the-tide-a-call-to-collective-action/

Medvedev, I. F., & Derevyagin, S. S. (2017). Tyazhelye metally v ekosistemah [Heavy metals in ecosystems]. Rakurs. https://www.arisersar.ru/Litera/107.12.17.pdf

Moiseenko, T. I., Gashkina, N. A., Sharova, Y. N., & Pokoeva, A. G. (2005). Ecotoxicological Assessment of After-Effects of the Volga River Water Contamination. Water Resources, 32(4), 369–383. https://doi.org/10.1007/s11268-005-0048-6

Nitskaya, S. G., & Antonenko, I. V. (2023). Mikroelementnyj sostav donnyh otlozhenij vodnyh ob"ektov v usloviyah gorodskoj zastrojki [Microelement composition of bottom sediments of water bodies in urban conditions]. Bulletin of the South Ural State University. Chemistry series, 15(1), 149–158. https://cyberleninka.ru/article/n/mikroelementnyy-sostav-donnyh-otlozheniy-vodnyh-obektov-v-usloviyah-gorodskoy-zastroyki

Nomosatryo, S., Tjallingii, R., Schleicher, A. M., Boli, P., Henny, C., Wagner, D., & Kallmeyer J. (2021). Geochemical Characteristics of Sediment in Tropical Lake Sentani, Indonesia, Are Influenced by Spatial Differences in Catchment Geology and Water Column Stratification. Frontiers in Earth Science, 9, Article 671642. https://doi.org/10.3389/feart.2021.671642

Normativy i kriterii ocenki zagryazneniya donnyh otlozhenij v vodnyh ob’ektah Sankt-Peterburga. Regional'nyj normativ [Standards and criteria for the evaluation of pollution of bottom sediments in water bodies of St. Petersburg. Regional standard], Open Joint Stock Company “Lenmorniiproekt” (1996). https://docs.cntd.ru/document/352042722

Ovchinnikov, A. S., Loboiko, V. F., Yakovlev, S. V., Ovcharova, A. Yu., Ivantsova, E. A., & Solovyova, I. A. (2020). Vodohranilishcha, prudy i ozyora Volgogradskoj oblasti [Reservoirs, ponds and lakes of the Volgograd region]. Volgograd State Agrarian University. https://elibrary.ru/item.asp?id=46597838

Peng, H., Yao, F., Xiong, S., Wu, Z., Niu, G., & Lu, T. (2021). Strontium in public drinking water and associated public health risks in Chinese cities. Environmental Science and Pollution Research, 28, 23048–23059. https://doi.org/10.1007/s11356-021-12378-y

Postanovlenie No. 2 Glavnogo Gosudarstvennogo Sanitarnogo Vracha RF “Ob utverzhdenii sanitarnyh pravil i norm “Gigienicheskie normativy i trebovaniya k obespecheniyu bezopasnosti i (ili) bezvrednosti dlya cheloveka faktorov sredy obitaniya“ [Decree No. 2 of the Chief State Sanitary Doctor of the Russian Federation “On approval of sanitary rules and norms “Hygienic standards and requirements for ensuring the safety and (or) harmlessness of environmental factors for humans”], SanPiN 1.2.3685-21 (2021). https://faolex.fao.org/docs/pdf/rus215586.pdf

Prikaz Ministerstva sel'skogo hozyajstva Rossijskoj Federacii ot 13.12.2016 “Ob utverzhdenii normativov kachestva vody vodnyh obektov rybohozyajstvennogo znacheniya, v tom chisle normativov predel'no dopustimyh koncentracij vrednyh veshchestv v vodah vodnyh ob"ektov rybohozyajstvennogo znacheniya“ [Order of the Ministry of Agriculture of the Russian Federation dated December 13, 2016 “On approval of water quality standards for fishery water bodies, including standards for maximum permissible concentrations of harmful substances in the waters of fishery water bodies“], No. 552 (2016). http://publication.pravo.gov.ru/Document/View/0001201701160006?index=1

Prirodoohrannyj normativnyj dokument federal'nyj. Kolichestvennyj himicheskij analiz pochv. Metodika izmerenij massovoj doli vodorastvorimyh form kationov ammoniya, kaliya, natriya, magniya, kal'ciya v pochvah, gruntah, gline, torfe, osadkah stochnyh vod, donnyh otlozheniyah metodom kapillyarnogo elektroforeza s ispol'zovaniem sistemy kapillyarnogo elektroforeza “Kapel” [Natural-normative document federal. Quantitative chemical analysis of soils. A method for mass fraction measuring of water-soluble forms of ammonium, potassium, sodium, magnesium, calcium cations in soils, soils, clay, peat, sewage sludge, bottom sediments using the capillary electrophoresis method by “Kapel'” capillary electrophoresis system], The Federal Supervisory Natural Resources Management Service of the Russian Federation, 16.1:2:2.2:2.3.74-2012 (2012).

Prirodoohrannyj normativnyj dokument federal'nyj. Kolichestvennyj himicheskij analiz vod. Metodika i izmerenij massovoj koncentracii gidrokarbonatov v probah prirodnyh i stochnyh vod titrimetricheskim metodom [Natural-normative document federal. Quantitative chemical analysis of water. Methodology for hydrocarbonates mass concentration measuring in samples of natural and waste waters using the titrimetric method], The Federal Supervisory Natural Resources Management Service of the Russian Federation, 14.1:2:3.99-97 (2017).

Prirodoohrannyj normativnyj dokument federal'nyj. Kolichestvennyj himicheskij analiz vod. Metodika izmerenij obshchej zhestkosti v probah prirodnyh i stochnyh vod titrimetricheskim metodom [Natural-normative document federal. Quantitative chemical analysis of water. Methodology for total hardness measuring in samples of natural and waste waters using the titrimetric method], The Federal Supervisory Natural Resources Management Service of the Russian Federation, 14.1:2:3.98-97 (2016).

Prirodoohrannyj normativnyj dokument federal'nyj. Kolichestvennyj himicheskij analiz vod. Metodika vypolneniya izmerenij massovyh koncentracij hlorid-ionov, nitrit-ionov, sul'fat-ionov, nitrat-ionov, ftorid-ionov i fosfat-ionov v probah prirodnyh, pit'evyh i ochishchennyh stochnyh vod s primeneniem sistemy kapillyarnogo elektroforeza “Kapel'” [Natural-normative document federal. Quantitative chemical analysis of water. Methodology for mass concentrations measuring of chloride ions, nitrite ions, sulfate ions, nitrate ions, fluoride ions and phosphate ions in samples of natural, drinking and treated wastewater using “Kapel” capillary electrophoresis system], The Federal Supervisory Natural Resources Management Service of the Russian Federation, 14.1:2:3:4.282-18 (2018).

Prirodoohrannyj normativnyj dokument federal'nyj. Kolichestvennyj himicheskij analiz vod. Metodika vypolneniya izmerenij massovyh koncentracij kationov kaliya, natriya, litiya, magniya, kal'ciya, ammoniya, stronciya, bariya v probah pit'evyh, prirodnyh, stochnyh vod metodom kapillyarnogo elektroforeza s ispol'zovaniem sistemy kapillyarnogo elektroforeza “Kapel'” [Natural-normative document federal. Quantitative chemical analysis of water. Methodology for mass concentrations measuring of potassium, sodium, lithium, magnesium, calcium, ammonium, strontium, barium cations in samples of drinking, natural, and waste waters using capillary electrophoresis by “Kapel” capillary electrophoresis system], The Federal Supervisory Natural Resources Management Service of the Russian Federation, 14.1:2:4.167-2000 (2000).

Prirodoohrannyj normativnyj dokument federal'nyj. Metodika izmerenij massovoj doli vanadiya, kadmiya, kobal'ta, marganca, medi, mysh'yaka, nikelya, rtuti, svinca, hroma i cinka v probah pochv, gruntov, donnyh otlozhenij, osadkov stochnyh vod atomno-absorbcionnym metodom s elektrotermicheskoj atomizaciej s ispol'zovaniem atomno-absorbcionnyh spektrometrov serii ”MGA” [Natural-normative document federal. Methodology for mass fraction measuring of vanadium, cadmium, cobalt, manganese, copper, arsenic, nickel, mercury, lead, chromium and zinc in samples of soils, bottom sediments, sewage sludge by the atomic absorption method with electrothermal atomization using atomic absorption spectrometers series “MGA”], The Federal Supervisory Natural Resources Management Service of the Russian Federation, 16.1:2:2.2:2.3.63-09 (2014).

Prirodoohrannyj normativnyj dokument federal'nyj. Metodika izmerenij massovoj doli vodoractvorimyh form hlorid-, sul'fat-, oksalat-, nitrat-, ftorid-, formiat-, fosfat-, acetat- ionov v pochvah, gruntah teplichnyh, glinah, torfe, osadkah stochnyh vod, aktivnom ile, donnyh otlozheniyah metodom kapillyarnogo elektroforeza s ispol'zovaniem sistemy kapillyarnogo elektroforeza “Kapel'” [Natural-normative document federal. Methodology for mass fraction measuring of water-soluble forms of chloride, sulfate, oxalate, nitrate, fluoride, formate, phosphate, acetate ions in soils, greenhouse soils, clays, peat, sewage sludge, activated sludge, bottom sediments using the capillary electrophoresis method by the “Kapel” capillary electrophoresis system], The Federal Supervisory Natural Resources Management Service of the Russian Federation, 16.1:2:2.3:2.2.69-10 (2010).

Riaz, U., Rafi, F., Naveed, M., Mehdi, S. M., Murtaza, G., Niazi, A. G., & Mehmood, H. (2021). Pesticide Pollution in an Aquatic Environment. In G. H. Dar, K. R. Hakeem, M. A. Mehmood, & H. Qadri (Eds.), Freshwater Pollution and Aquatic Ecosystems. Environmental Impact and Sustainable Management (pp. 131–163). Apple Academic Press.

Romanova, T. I., & Bolshanik, P. V. (2022). Characteristics of the chemical composition of bottom sediments from springs in Khanty-Mansiysk. International Research Journal, 10(124). https://doi.org/10.23670/IRJ.2022.124.33

Rukovodyashchij document. Massovaya dolya galoidorganicheskih pesticidov P,P'-DDT, P,P'-DDE, α-GHCG, ү-GHCG, trifluralina v probah pochvy. Metodika izmerenij metodom gazozhidkostnoj hromatografii [Guideline document. Mass fraction of organohalogen pesticides P,P'-DDT, P,P'-DDE, α-HCH, ү-HCH, trifluralin in soil samples. Method of measurements using gas chromatography], All-Russia Research Institute of Hydrometeorological Information, World Data Centre, 52.18.180-2011 (2011).

Savenko, A. V., Brekhovskikh, V. F., & Pokrovsky, O. S. (2016). Macro- and Microelement Water Composition of the Volga River Delta and Its Interannual Variability. Arid Ecosystems, 6(1), 8–17. https://doi.org/10.1134/S2079096116010042

Tikhomirov, O. A., & Markov, M. V. (2009). Nakoplenie tyazhelyh metallov v donnyh otlozheniyah akval'nyh kompleksov vodohranilishcha sezonnogo regulirovaniya stoka [Heavy metals accumulation in bottom deposits of aquatic complexes in a reservoir of seasonally controlled outflow]. Uchenye Zapiski Kazanskogo Universiteta. Seriya. Estestvennye Nauki, 151(3), 143–152. https://kpfu.ru/portal/docs/F_1107635653/151_3_est_14.pdf

Tomilina, I. I., Gapeeva, M. V., & Lozhkina, R. A. (2018). Ocenka kachestva vody i donnyh otlozhenij kaskada vodohranilishch reki Volga po pokazatelyam toksichnosti i himicheskogo sostava [Assessing the quality of water and bottom sediments in Volga cascade of reservoirs by characteristics of toxicity and water chemistry]. Transactions of IBIW RAS, 81(84), 107–131. https://cyberleninka.ru/article/n/otsenka-kachestva-vody-i-donnyh-otlozheniy-kaskada-vodohranilisch-reki-volga-po-pokazatelyam-toksichnosti-i-himicheskogo-sostava

Vasilchenko, А. А. (2022). Spatial Analysis of the Volga-Akhtuba Floodplain Irrigated Fields Infrastructure in the Volgograd Region. Scientific Agronomy Journal, 4(119), 12–18. https://doi.org/10.34736/FNC.2022.119.4.002.12-18

Zakrutkin, V. E., Gibkov, E. V., Reshetnyak, O. S., & Reshetnyak, V. N. (2020). Donnye otlozheniya kak indikator pervichnogo i istochnik vtorichnogo zagryazneniya rechnyh vod uglepromyshlennyh territorij Vostochnogo Donbassa [River sediments as river waters' primary pollution indicator and secondary pollution source in East Donbass coal-mining areas]. Izvestiya RAN. Seriya Geograficheskaya, 84(2), 259–271. https://doi.org/10.31857/S2587556620020168

Downloads

Published

2024-08-19

How to Cite

Mezhevova, A., Berestneva, Y., & Belyaev, A. (2024). THE CURRENT CHEMICAL COMPOSITION OF INLAND WATER BODIES OF THE VOLGA-AKHTUBA FLOODPLAIN (RUSSIA). Journal of the Geographical Institute “Jovan Cvijić” SASA, 74(2), 147–164. https://doi.org/10.2298/IJGI240312009M

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.