HOW TO IMPROVE INHABITANTS' ACCEPTANCE OF RAINWATER HARVESTING SYSTEMS? APPLICATION TO AN EXISTING COLLECTIVE RESIDENCE IN NORTHERN ALGERIA

Authors

  • Adlane M'hammedi Bouzina University Saad Dahlab Blida 1, Institute of Architecture and Urbanism (IAU), Environment and Technology for Architecture and Heritage Laboratory (ETAP), Blida https://orcid.org/0009-0000-0225-4846
  • Ali Belmeziti University Saad Dahlab Blida 1, Institute of Architecture and Urbanism (IAU), Observatory of City and Architecture for Urban and Spatial Mutations (OVAMUS), Blida https://orcid.org/0000-0002-7089-6944
  • Bernard De Gouvello Center for Studies and Expertise on Risks, Environment, Mobility, and Planning (Cerema), Territorial Directorate for Île-de-France, Trappes https://orcid.org/0000-0003-3657-8712

DOI:

https://doi.org/10.2298/IJGI230918001B

Keywords:

rainwater harvesting system, inhabitants’ acceptance, potential potable water saving, existing collective residence, northern Algeria

Abstract

In Algeria, at the present time, there are no rainwater harvesting systems (RWHS) registered with the public authorities as an alternative to the public water supply. This is explained by numerous factors, the most important being inhabitants’ acceptance. The aim of this article is to investigate the current level of acceptance of an RWHS as a viable method for backing up the public water supply system. Our hypothesis is that inhabitants’ acceptance can be improved by the increasing awareness of the benefits of an RWHS. For the purposes of this study, an RWHS located in northern Algeria was designed, and its benefits were measured and discussed with the direct participation of residents living in the building. The first benefit was the potential potable water saving (PPWS) and the second was the benefit-cost ratio (BCR). The PPWS was estimated at 51 m3/year. The BCR was estimated at 7% (15% with local council funding). This paper shows that, in the case of an existing building, inhabitant acceptance of an RWHS depends on three factors: (1) the amount of rainwater delivered by the RWHS; (2) the cost of building and managing it; and (3) the extent of the modifications made to the building.

Article metrics

References

Abdulla, F. (2020). Rainwater harvesting in Jordan: potential water saving, optimal tank sizing and economic analysis. Urban Water Journal, 17(5), 446–456. https://doi.org/10.1080/1573062X.2019.1648530

Afsari, N., Murshed, S. B., Uddin, S. M. N., & Hasan, M. (2022). Opportunities and Barriers Against Successive Implementation of Rainwater Harvesting Options to Ensure Water Security in Southwestern Coastal Region of Bangladesh. Frontiers in Water, 4, Article 811918. https://doi.org/10.3389/frwa.2022.811918

Ali, S., Zhang, S., & Yue, T. (2020). Environmental and economic assessment of rainwater harvesting systems under five climatic conditions of Pakistan. Journal of Cleaner Production, 259, Article 120829. https://doi.org/10.1016/j.jclepro.2020.120829

Alim, M. A., Rahman, A., Tao, Z., Samali, B., Khan, M. M., & Shirin, S. (2020). Suitability of roof harvested rainwater for potential potable water production: A scoping review. Journal of Cleaner Production, 248, Article 119226. https://doi.org/10.1016/j.jclepro.2019.119226

Andrei, G. (2021). Approaches based on artificial intelligence for water supply systems. Journal of Marine Technology and Environment, 1, 5–9. http://dx.doi.org/10.53464/jmte.01.2021.01

Archive Météo Blida [Year-by-year weather history in Blida]. (2017). Meteoblue. https://www.meteoblue.com/fr/meteo/archive/windrose/blida_alg%C3%A9rie_2503769

Belguidoum, S. (2021). Transition urbaine et nouvelles urbanités: la ville algérienne dans tous ses états [Urban transition and new urbanities: the Algerian city in all its states]. Moyen-Orient. https://shs.hal.science/halshs-02090578

Belmeziti, A. (July 1–5, 2019). Evaluation du potentiel de récupération et d'utilisation de l'eau de pluie dans un bâtiment-type en Algérie [Evaluation of the potential for recovering and using rainwater in a typical building in Algeria]. 10th International Conference of Urban Water "Novatech". Lyon, France.

Belmeziti, A., & de Gouvello, B. (2016). Spatial and numerical analysis of the parameters influencing potential for potable water savings made using rainwater harvesting: case of the Paris agglomeration. Water and Environment Journal, 30(1–2), 70–76. https://doi.org/10.1111/wej.12170

Belmeziti, A., Coutard, O., & de Gouvello, B. (2014). How much drinking water can be saved by using rainwater harvesting on a large urban area? Application to Paris agglomeration. Water Science and Technology, 70(11), 1782–1788. https://doi.org/10.2166/wst.2014.269

Campisano, A., Butler, D., Ward, S., Burns, M. J., Friedler, E., DeBusk, K., Fisher-Jeffes, L., Ghisi, E., Rahman, A., Furumai, H., & Han, M. (2017). Urban rainwater harvesting systems: Research, implementation and future perspectives. Water Research, 115, 195–209. https://doi.org/10.1016/j.watres.2017.02.056

Campos Cardoso, R. N., Cavalcante Blanco, C. J., & Duarte, J. M. (2020). Technical and financial feasibility of rainwater harvesting systems in public buildings in Amazon, Brazil. Journal of Cleaner Production, 260, Article 121054. https://doi.org/10.1016/j.watres.2017.02.056

Concha Larrauri, P., Campos Gutierrez, J. P., Lall, U., & Ennenbach, M. (2020). A City Wide Assessment of the Financial Benefits of Rainwater Harvesting in Mexico City. Journal of the American Water Resources Association, 56(2), 247–269. https://doi.org/10.1111/1752-1688.12823

Dallman, S., Chaudhry, A. M., Muleta, M. K., & Lee, J. (2016). The Value of Rain: Benefit-Cost Analysis of Rainwater Harvesting Systems. Water Resources Management, 30(12), 4415–4428. https://doi.org/10.1007/s11269-016-1429-0

de Gouvello, B., de Longvilliers, S., Rivron, C., Muller, C., & Lenoir, P. (June 27–July 1, 2010). Elaboration d'un outil d'aide au dimensionnement de cuves de récupération adapté au contexte méditerranéen [Development of a tool to help size recovery tanks adapted to the Mediterranean context]. 10th International Conference of Urban Water “Novatech”. Lyon, France. https://hal.science/hal-03296687/document

de Gouvello, B., Gerolin, A., & Le Nouveau, N. (2014). Rainwater harvesting in urban areas: how can foreign experiences enhance the French approach? Water Supply, 14(4), 569–576. https://doi.org/10.2166/ws.2014.029

Djaffar, S., & Kettab, A. (2018). Water management in Algeria: what policies, what strategies, what futures?. Algerian Journal of Environmental Science and Technology, 4(1), 32–39. https://www.cabdirect.org/cabdirect/abstract/20193441923

Domènech, L., March, H., & Saurí, D. (2013). Degrowth initiatives in the urban water sector? A social multi-criteria evaluation of non-conventional water alternatives in Metropolitan Barcelona. Journal of Cleaner Production, 38, 44–55. https://doi.org/10.1016/j.jclepro.2011.09.020

Fonseca, C., Franceys, R., Batchelor, C., McIntyre, P., Klutse, A., Komives, K., Moriarty, P., Naafs, A., Nyarko, K., Pezon, C., Potter, A., Reddy, R., & Snehalatha, M. (2010). Life-Cycle Costs Approach; Glossary and Cost Components. IRC International Water and Sanitation Centre. https://www.ircwash.org/sites/default/files/Fonseca-2010-Life.pdf

Ghisi, E., Rupp, R. F., & Triska, Y. (2014). Comparing indicators to rank strategies to save potable water in buildings. Resources, Conservation and Recycling, 87, 137–144. https://doi.org/10.1016/j.resconrec.2014.04.001

Goodwin, D., Raffin, M., Jeffrey, P., & Smith, H. M. (2019). Collaboration on risk management: The governance of a non-potable water reuse scheme in London. Journal of Hydrology, Article 573, 1087–1095. https://doi.org/10.1016/j.jhydrol.2017.07.020

Gu, Q., Chen, Y., Pody, R., Cheng, R., Zheng, X., & Zhang, Z. (2015). Public perception and acceptability toward reclaimed water in Tianjin. Resources, Conservation and Recycling, 104(Part A), 291–299. https://doi.org/10.1016/j.resconrec.2015.07.013

Herrmann, T., & Schmida, U. (2000). Rainwater utilisation in Germany: efficiency, dimensioning, hydraulic and environmental aspects. Urban Water, 1(4), 307–316. https://doi.org/10.1016/S1462-0758(00)00024-8

Imteaz, M. A., Adeboye, O. B., Rayburg, S., & Shanableh, A. (2012). Rainwater harvesting potential for southwest Nigeria using daily water balance model. Resources, Conservation and Recycling, 62, 51–55. https://doi.org/10.1016/j.resconrec.2012.02.007

Infoclimat. (2023). Climatology of the year 2023. https://www.infoclimat.fr/climatologie/annee/2023/annaba/valeurs/60360.html

Islam, M. M., Chou, F. N.-F., & Kabir, M. R. (2010). Acceptability of the rainwater harvesting system to the slum dwellers of Dhaka City. Water Science & Technology, 61(6), 1515–1523. https://doi.org/10.2166/wst.2010.049

Jing, X., Zhang, S., Zhang, J., Wang, Y., Wang, Y., & Yue, T. (2018). Analysis and Modelling of Stormwater Volume Control Performance of Rainwater Harvesting Systems in Four Climatic Zones of China. Water Resources Management, 32(8), 2649–2664. https://doi.org/10.1007/s11269-018-1950-4

Lúcio, C., Silva, C., & Sousa, V. (2020). A scale-adaptive method for urban rainwater harvesting simulation. Environmental Science and Pollution Research, 27, 4557–4570. https://doi.org/10.1007/s11356-019-04889-6

Malinowski, P. A., Stillwell, A. S., Wu, J. S., & Schwarz, P. M. (2015). Energy-Water Nexus: Potential Energy Savings and Implications for Sustainable Integrated Water Management in Urban Areas from Rainwater Harvesting and Gray-Water Reuse. Journal of Water Resources Planning and Management, 141(12), Article A4015003. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000528

Maskwa, R., Gardner, K., & Mo, W. (2021). A Spatial Life Cycle Cost Comparison of Residential Greywater and Rainwater Harvesting Systems. Environmental Engineering Science, 38(8), 715–728. https://doi.org/10.1089/ees.2020.0426

Menegaki, A. N., Hanley, N., & Tsagarakis, K. P. (2007). The social acceptability and valuation of recycled water in Crete: A study of consumers' and farmers' attitudes. Ecological Economics, 62(1), 7–18. https://doi.org/10.1016/j.ecolecon.2007.01.008

Meraj, G., Singh, S. K., Kanga, S., & Islam, Md. N. (2022). Modeling on comparison of ecosystem services concepts, tools, methods and their ecological-economic implications: A review. Modeling Earth Systems and Environment, 8(1), 15–34. https://doi.org/10.1007/s40808-021-01131-6

Mokssit, A., De Gouvello, B., Chazerain, A., Figuères, F., & Tassin, B. (2018). Building a Methodology for Assessing Service Quality under Intermittent Domestic Water Supply. Water, 10(9), Article 1164. https://doi.org/10.3390/w10091164

Molaei, O., Kouchakzadeh, M., & Fashi, F. H. (2019). Evaluation of rainwater harvesting performance for water supply in cities with cold and semi-arid climate. Water Supply, 19(5), 1322–1329. https://doi.org/10.2166/ws.2018.193

Morales-Pinzón, T., Lurueña, R., Rieradevall, J., Gasol, C. M., & Gabarrell, X. (2012). Financial feasibility and environmental analysis of potential rainwater harvesting systems: A case study in Spain. Resources, Conservation and Recycling, 69, 130–140. https://doi.org/10.1016/j.resconrec.2012.09.014

Mukarram, M. M. T., Kafy, A.-A., Mukarram, M. M. T., Rukiya, Q. U., Almulhim, A. I., Das, A., Fattah, Md. A., Rahman, M. T., & Chowdhury, Md. A. (2023). Perception of coastal citizens on the prospect of community-based rainwater harvesting system for sustainable water resource management. Resources, Conservation and Recycling, 198, Article 107196. https://doi.org/10.1016/j.resconrec.2023.107196

National Statistics Office, Algeria. (2023). Indice des prix à la consommation [Consumer price index]. Algiers. http:// https://www.ons.dz/spip.php?rubrique124

Nichane, M., & Khelil, M. (2015). Changements climatiques et ressources en eau en Algérie Vulnérabilité, Impact et Stratégie d’adaptation [Climate change and Water Resources in Algeria: Vulnerability, Impact and Adaptation Strategy]. Larhyss Journal, 21, 25–33. https://larhyss.net/ojs/index.php/larhyss/article/view/251/238

Nkhoma, P. R., Alsharif, K., Ananga, E., Eduful, M., & Acheampong, M. (2021). Recycled water reuse: What factors affect public acceptance? Environmental Conservation, 48(4), 278–286. https://doi.org/10.1017/S037689292100031X

Pala, G. K., Pathivada, A. P., Velugoti, S. J. H., Yerramsetti, C., & Veeranki, S. (2021). Rainwater harvesting—A review on conservation, creation & cost-effectiveness. Materials Today: Proceedings, 45, 6567–6571. https://doi.org/10.1016/j.matpr.2020.11.593

Pavolová, H., Bakalár, T., Kudelas, D., & Puškárová, P. (2019). Environmental and economic assessment of rainwater application in households. Journal of Cleaner Production, 209, 1119–1125. https://doi.org/10.1016/j.jclepro.2018.10.308

Severis, R. M., da Silva, F. A., Wahrlich, J., Skoronski, E., & Simioni, F. J. (2019). Economic analysis and risk-based assessment of the financial losses of domestic rainwater harvesting systems. Resources, Conservation and Recycling, 146, 206–217. https://doi.org/10.1016/j.resconrec.2019.03.040

Sharma, A. K., Grant, A. L., Grant, T., Pamminger, F., & Opray, L. (2009). Environmental and Economic Assessment of Urban Water Services for a Greenfield Development. Environmental Engineering Science, 26(5), 921–934. https://doi.org/10.1089/ees.2008.0063

Silva, C. M., Sousa, V., & Carvalho, N. V. (2015). Evaluation of rainwater harvesting in Portugal: Application to single-family residences. Resources, Conservation and Recycling, 94, 21–34. https://doi.org/10.1016/j.resconrec.2014.11.004

Taher, M. N., Awayes, J., Cavkas, S., & Beler-Baykal, B. (2019). Public attitude for acceptance of grey water reuse in Istanbul and the impact of informing potential consumers. Desalination and Water Treatment, 172, 316–322. http://doi.org/10.5004/dwt.2019.24978

Takagi, K., Otaki, M., Otaki, Y., & Chaminda, T. (2019). Availability and public acceptability of residential rainwater use in Sri Lanka. Journal of Cleaner Production, 234, 467–476. https://doi.org/10.1016/j.jclepro.2019.06.263

Thapa, A., Khanal, G., Mahapatra, S. K., Devkota, N., Mahato, S., & Paudel, U. R. (2022). Identifying determinants of sustainable water management at the household level through rainwater harvesting systems in Nepal. Water Policy, 24(10), 1676–1691. https://doi.org/10.2166/wp.2022.113

Toosi, A. S., Tousi, E. G., Ghassemi, S. A., Cheshomi, A., & Alaghmand, S. (2020). A multi-criteria decision analysis approach towards efficient rainwater harvesting. Journal of Hydrology, 582, Article 124501. https://doi.org/10.1016/j.jhydrol.2019.124501

Zhou, J., Pang, Y., Fu, G., Wang, H., Zhang, Y., & Memon, F. A. (2023). A review of urban rainwater harvesting in China. Water Reuse, 13(1), 1–17. https://doi.org/10.2166/wrd.2023.041

Downloads

Published

2024-04-19

How to Cite

M’hammedi Bouzina, A., Belmeziti, A., & De Gouvello, B. (2024). HOW TO IMPROVE INHABITANTS’ ACCEPTANCE OF RAINWATER HARVESTING SYSTEMS? APPLICATION TO AN EXISTING COLLECTIVE RESIDENCE IN NORTHERN ALGERIA. Journal of the Geographical Institute “Jovan Cvijić” SASA, 74(1), 1–16. https://doi.org/10.2298/IJGI230918001B