THE NEXUS BETWEEN SOLAR ACTIVITY AND POPULATION DISPLACEMENT: THE CASE STUDY OF SOUTHERN EUROPE

Authors

DOI:

https://doi.org/10.2298/IJGI250621017L

Keywords:

solar activity, population displacement, natural disasters, Southern Europe

Abstract

Solar activity, as the dominant feature of the Sun, has an impact on nature, technology, humans, and their activities on Earth. The aim of this paper is to investigate the linkages between solar activity, natural disasters, and population displacement in Southern Europe, particularly focusing on the characteristics of natural disasters induced displacement during different phases of solar activity. For the purpose of the paper, data on solar activity and displacements induced by hazards category and type in the period 2008–2023 (24 and 25 Solar Cycle) were collected. The quantitative analysis is supported by statistical procedures (seasonal-trend decomposition by Loess—STL, tests for stationarity, correlation analysis, cross-correlation functions—CCF, vector autoregression—VAR, linear regression model, principal component analysis—PCA, k-means) computed in the software R. The results show certain linkages between solar activity and displacements induced by weather related hazards, and indicate that the intensity of this type of displacement is significantly higher during periods of greater solar activity. This paper opens up new horizons for future research in the field of solar activity impact on population displacement.

Article metrics

References

Balogh, A., Hudson, H. S., Petrovay, K., & von Steiger, R. (2014). Introduction to the Solar Activity Cycle: Overview of Causes and Consequences. Space Science Reviews, 186(1–4), 1–15. http://dx.doi.org/10.1007/s11214-014-0125-8

Black, R., Adger, W. N., Arnell, N. W., Dercon, S., Geddes, A., & Thomas, D. S. G. (2011). The effect of environmental change on human migration. Global Environmental Change, 21, 3–11. http://dx.doi.org/10.1016/j.gloenvcha.2011.10.001

Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time Series Analysis: Forecasting and Control (5th ed.). Wiley.

Cattell, R. B. (1966). The Scree Test For The Number Of Factors. Multivariate Behavioral Research, 1(2), 245–276. http://dx.doi.org/10.1207/s15327906mbr0102_10

Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. (1990). STL: A Seasonal-Trend Decomposition Procedure Based on Loess. Journal of Official Statistics, 6(1), 3–73. https://www.wessa.net/download/stl.pdf

COST. (n.d.). Action CA22162 — FutureMed: A transdisciplinary network to bridge climate science and impacts on society. Retrieved from https://www.cost.eu/actions/CA22162/

Czymzik, M., Muscheler, R., & Brauer, A. (2016). Solar modulation of flood frequency in central Europe during spring and summer on interannual to multi-centennial timescales. Climate of the Past, 12, 799–805. https://doi.org/10.5194/cp-12-799-2016

Dmitrieva, I. V., Zaborova, E. P., & Obridko, V. N. (1998). Natural disasters and solar activity (based on chronicles and annals). Astronomical & Astrophysical Transactions, 17(1), 29–33. https://doi.org/10.1080/10556799808235421

Ekoh, S. S., Teron, L., Ajibade I., & Kristiansen, S. (2022). Flood risk perceptions and future migration intentions of Lagos residents. International Journal of Disaster Risk Reduction, 83, Article 103399. https://doi.org/10.1016/j.ijdrr.2022.103399

EM-DAT. (2025). EM-DAT – Country profiles [Data set]. https://data.humdata.org/dataset/emdat-country-profiles

EMN. (2023). Displacement and migration related to disasters, climate change and environmental degradation – EMN. https://emn.ie/publications/climate-change-and-migration/

Fabling, R., Grimes, A., & Timar, L. (2022). Emigration and employment impacts of a disastrous earthquake: country of birth matters. Regional Studies, 57(12), 2491–2502. https://doi.org/10.1080/00343404.2022.2129607

Fry, E. K. (2012). The risks and impacts of space weather: Policy recommendations and initiatives. Space Policy, 28(3), 180–184. https://doi.org/10.1016/j.spacepol.2012.06.005

Gomez, J. F. P., & Radovanović, M. (2008). Solar activity as a possible cause of large forest fires—A case study: Analysis of the Portuguese forest fires. Science of The Total Environment, 394(1), 197–205. https://doi.org/10.1016/j.scitotenv.2008.01.040

Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37(3), 424–438. https://doi.org/10.2307/1912791

Hathaway, D. H. (2010). The Solar Cycle. Living Reviews in Solar Physics, 7, Article 1. https://doi.org/10.12942/lrsp-2010-1

Hathaway, D. H. (2015). The Solar Cycle. Living Reviews in Solar Physics, 12, Article 4. https://doi.org/10.1007/lrsp-2015-4

Hong-yan, L., Li-jun, X., & Xiao-jun, W. (2015). Relationship between solar activity and flood/drought disasters of the Second Songhua river basin. Journal of Water and Climate Change, 6(3), 578–585. https://doi.org/10.2166/wcc.2014.053

IDMC. (2023). Global report on internal displacement 2023: Internal displacement and food security. https://www.internal-displacement.org/global-report/grid2023/

IDMC. (2024). Country profiles [Data set]. https://www.internal-displacement.org/countries/

IDMC. (2025). Displacement data [Data set]. https://www.internal-displacement.org/database/displacement-data/

Jolliffe, I. T. (2002). Principal Component Analysis (2nd ed.). Springer.

Ketchen, D. J., & Shook, C. L. (1996). The application of cluster analysis in strategic management research: An analysis and critique. Strategic Management Journal, 17(6), 441–458. https://sms.onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0266(199606)17:6%3C441::AID-SMJ819%3E3.0.CO;2-G

Kraler, A., Katsiaficas, C., & Wagner, M. (2020). Climate Change and Migration. Legal and policy challenges and responses to environmentally induced migration. European Parliament. https://www.europarl.europa.eu/RegData/etudes/STUD/2020/655591/IPOL_STU(2020)655591_EN.pdf

Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of Econometrics, 54(1–3), 159–178. https://doi.org/10.1016/0304-4076(92)90104-Y

Langović, M., Popović, S., Dragićević, S., Stojanović, Ž., & Manić, E. (2024). Assessment of the Economic Consequences of River Bank Erosion: The Case of the South Morava River, Serbia. Water Economics and Policy, 10(2), Article 2450003. https://doi.org/10.1142/S2382624X24500036

Laurenz, L., Ludecke, H-J., & Luning, S. (2019). Influence of solar activity changes on European rainfall. Journal of Atmospheric and Solar-Terrestrial Physics, 185, 29–42. https://doi.org/10.1016/j.jastp.2019.01.012

Little, R. J. A., & Rubin, D. B. (2002). Statistical Analysis with Missing Data (2nd ed.). Wiley.

Lütkepohl, H. (2005). New Introduction to Multiple Time Series Analysis. Springer.

Malinović-Milićević, S., Radovanović, M. M., Radenković, S. D., Vyklyuk, Y., Milovanović, B., Milanović Pešić, A., Milenković, M., Popović, V., Petrović, M., Sydor, P., & Gajić, M. (2023). Application of Solar Activity Time Series in Machine Learning Predictive Modeling of Precipitation-Induced Floods. Mathematics, 11(4), Article 795. https://doi.org/10.3390/math11040795

Malinović-Milićević, M., Vyklyuk, Y., Radovanović, M. M., Milenković, M., Milanović Pešić, A., Milovanović, B., Popović, T., Sydor, P., & Petrović, M. D. (2024). Applying machine learning in the investigation of the link between the high-velocity streams of charged solar particles and precipitation-induced floods. Environmental Monitoring and Assessment, 196, Article 400. https://doi.org/10.1007/s10661-024-12537-x

Marchiori, L., Maystadt, J-F., & Schumacher, I. (2012). The impact of weather anomalies on migration in sub-Saharan Africa. Journal of Environmental Economics and Management, 63(3), 355–374. https://doi.org/10.1016/j.jeem.2012.02.001

Mbaye, L. M., & Okara, A. (2023). Climate change, natural disasters, and migration. IZA World of Labor, 346v2. https://doi.org/10.15185/izawol.346v2

Mbaye, L. M., & Zimmermann, K. F. (2015). Environmental Disasters and Migration (IZA Discussion Papers, No. 9349). Institute for the Study of Labor (IZA). https://www.econstor.eu/bitstream/10419/124866/1/dp9349.pdf

McConnell, K., Fussell, E., DeWaard, J., Whitaker, S., Curtis, K. J., St. Denis, L., Balch, J., & Price, K. (2024). Rare and highly destructive wildfires drive human migration in the U.S. Nature Communications, 15, Article 6631. https://doi.org/10.1038/s41467-024-50630-4

McConnell, K., Whitaker, S., Fussell, E., DeWaard, J., Curtis, K., Price, K., St. Denis, L., & Balch, J. (2021). Effects of Wildfire Destruction on Migration, Consumer Credit, and Financial Distress. Working Paper No. 21–29. Federal Reserve Bank of Cleveland. https://doi.org/10.26509/frbc-wp-202129

Milenković, M., Radovanović, M., & Ducić, V. (2011). The Impact of Solar Activity on the Greatest Forest Fires of Deliblatska peščara (Serbia). Forum geografic. Studii şi cercetări de geografie şi protecţia mediului, 10(1), 107–116. https://doi.org/10.5775/fg.2067-4635.2011.026.i

MMP. (2017). Migration, displacement, and the environment (Briefing Paper 03). Mixed Migration Platform. https://mixedmigration.org/wp-content/uploads/2018/05/032_migration-displacement-environment.pdf

Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to Linear Regression Analysis (6th ed.). Wiley.

Nina, A., Srećković, V. A., & Radovanović, M. (2019). Multidisciplinarity in research of extreme solar energy influences on natural disasters. Sustainability, 11, Article 974. https://doi.org/10.3390/su11040974

Piguet, E., Kaenzig, R., & Guélat, J. (2018). The uneven geography of research on “environmental migration”. Population and Environment, 39, 357–383. https://doi.org/10.1007/s11111-018-0296-4

R Core Team. (2024). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.

Radovanović, M. M., Pavlović, T. M., Stanojević, G. B., Milanović, M. M., Pavlović, M. A., & Radivojević, A. R. (2015). The Influence of Solar Activities on Occurrence of the Forest Fires in South Europe. Thermal Science, 19(2), 435–446. https://doi.org/10.2298/TSCI130930036R

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65. https://doi.org/10.1016/0377-0427(87)90125-7

South American Conference on Migration. (2022). Regional guidelines on the protection and assistance of cross-border displaced persons and migrants in countries affected by disasters. TS-SACM, IOM, PDD, IEH. https://csmigraciones.org/sites/default/files/2022-01/CSM_Lineamientos%20Regionales_ENG.pdf

Shestopalov, I. P., & Kharin, E. P. (2014). Relationship between solar activity and global seismicity and neutrons of terrestrial origin. Russian Journal of Earth Sciences, 14(1), Article ES1002. https://doi.org/10.2205/2014ES000536

Shumway, R. H., & Stoffer, D. S. (2017). Time Series Analysis and Its Applications: With R Examples (4th ed.). Springer.

Sida. (2024). Migration, Forced Displacement and Climate Change. Thematic Support Unit, Swedish International Development Cooperation Agency. https://www.sida.se/en/about-sida/publications/migration-forced-displacement-and-climate-change

Singh, A., & Patel, K. (2021). Statistical Study of Solar Activity Parameters of Solar Cycle 24. Journal of Scientific Research, 65(1), 197–200. https://doi.org/10.37398/JSR.2021.650125

Srećković, V. A. (2023). New Challenges in Exploring Solar Radiation: Influence, Consequences, Diagnostics, Prediction. Applied Sciences, 13(7). Article 4126. https://doi.org/10.3390/app13074126

Srećković, V. A., Kolarski, A., Langović, M., Arnaut, F., Jevremović, S., & Mijić, Z. R. (2025). The strongest solar flares of Solar Cycle 25 and their subionospheric impact: data and modeling. Contributions of the Astronomical Observatory Skalnaté Pleso, 55(2), 88–94. https://doi.org/10.31577/caosp.2025.55.2.88

Stojanov, R. (2021). Climate migration Case Study. Diaconia ECCB Center of Relief and Development.

SWL (SpaceWeatherLive.com). (2025). Solar Cycle progression. Available from https://www.spaceweatherlive.com/en/solar-activity/solar-cycle.html

Tentomas, G., & Marsellos, A. E. (2022). Sunspot Number Effects on Earth’s Climate Change and Water Sustainability for Long Island, NY. 29th Conference on the Geology of Long Island and Metropolitan New York. https://www.stonybrook.edu/commcms/geosciences/about/_LIG-Past-Conference-abstract-pdfs/2022-Abstracts/Tentomas.pdf

Tsuda, T., Shepherd, M., & Gopalswamy, N. (2015). Advancing the understanding of the Sun–Earth interaction—the Climate and Weather of the Sun–Earth System (CAWSES) II program. Progress in Earth and Planetary Science, 2, Article 28. https://doi.org/10.1186/s40645-015-0059-0

UNFPA. (2024). Disaster displacements disproportionately impact women, girls in fragile contexts. United Nations Population Fund. https://www.unfpa.org/sites/default/files/resource-pdf/Disaster%20displacements%20UNFPA-IDMC%20FactSheet_v03.pdf

Whitehouse, D. (2020). The next solar cycle and why it matters for climate. The Global Warming Policy Foundation. https://www.thegwpf.org/content/uploads/2020/04/SolarCycle25.pdf

Xiao, Z., Zhao, L., Zhou, L., Huo, W., Mironova, I., & Miyahara, H. (2024). Editorial: Impact of solar activities on weather and climate. Frontiers in Earth Science, 11. Article 1338416. https://doi.org/10.3389/feart.2023.1338416

Yanchukovsky, V. L. (2021). Solar activity and earth seismicity. Solar-Terrestrial Physics, 7(1), 67–77. https://doi.org/10.12737/stp-71202109

Downloads

Published

2025-10-18

How to Cite

Langović, M., Srećković, V. A., Vidović, Z., Langović, M., & Mijić, Z. (2025). THE NEXUS BETWEEN SOLAR ACTIVITY AND POPULATION DISPLACEMENT: THE CASE STUDY OF SOUTHERN EUROPE. Journal of the Geographical Institute “Jovan Cvijić” SASA, 75(3), 329–345. https://doi.org/10.2298/IJGI250621017L

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.