REMOTE SENSING ROLE IN ENVIRONMENTAL STRESS ANALYSIS: ЕАST SERBIA WILDFIRES CASE STUDY (2007–2017)

Authors

  • Ivan M. Potić University of Belgrade, Faculty of Geography, Belgrade http://orcid.org/0000-0002-0691-7675
  • Nina B. Ćurčić Geographical Institute “Jovan Cvijić” SASA, Belgrade
  • Milica M. Potić Independent researcher, Belgrade
  • Milan M. Radovanović Geographical Institute “Jovan Cvijić” SASA, Belgrade; South Ural State University, Institute of Sports, Tourism and Service, Chelyabinsk
  • Tatiana N. Tretiakova South Ural State University, Institute of Sports, Tourism and Service, Chelyabinsk

DOI:

https://doi.org/10.2298/IJGI1703249P

Keywords:

machine learning, random forest, change detection, normalized burn ratio (NBR) index

Abstract

Wildfire has been one of the most dangerous environmental stressors nowadays. It is an important disturbance where ecosystem biomass is burned and where organisms are damaged or killed by fire. Therefore, the detecting and monitoring of this stressor are of great importance. During last decades, extensive forest fires have spread in Southern Europe, and they are registered in Serbia as well. During year 2007, several significant fires were registered in Stara Planina and Svrljiške Planine Mountains. The aims of this study were to detect land cover changes for the studied site from 2007–2017, to focus on monitoring the area affected by the wildfire, and to analyse the environment response to stressor. The study area is situated in East Serbia, partially covering the Mountains Stara Planina (western part) and Svrljiške planine (eastern part). The remote sensing techniques were used in the analysis and main satellite data were obtained via USGS Earth Explorer application. Six different classes were selected: Water, Forest, Pastures, Artificial area, Agriculture, and Bare soil. Results showed significant changes in two classes, Forest, and Pastures — the forest spread for more than 20% at the expense of pasture, which decreased more than 23%.

Article metrics

References

Amidžić, L., Krasulja, S., & Belij, S. (Eds.). (2007). Protected Natural Resources in Serbia. Belgrade: Ministry of Environmental protection, Institute for Nature Conservation.

Arroyo, L. A., Pascual, C., & Manzanera, J. A. (2008). Fire models and methods to map fuel types: The role of remote sensing. Forest Ecology and Management, 256(6), 1239–1252. doi: https://doi.org/10.1016/j.foreco.2008.06.048

Barbosa, P. M., Grégoire, J. M., & Pereira, J. M. C. (1999). An algorithm for extracting burned areas from time series of AVHRR GAC data applied at a continental scale. Remote Sensing of Environment, 69(3), 253–263. doi: https://doi.org/10.1016/S0034-4257(99)00026-7

Bastarrika, A., Chuvieco, E. & Martin, M. P. (2011). Mapping burned areas from Landsat TM/ETM+ data with two-phase algorithm: Balancing omission and commission errors. Remote Sensing of Environment, 115(4), 1003–1012. doi: https://doi.org/10.1016/j.rse.2010.12.005

Bijlsma, R., & Loeschcke, V. (2005). Environmental stress, adaptation and evolution: an overview. Journal of Evolutionary Biology, 18(4), 744–749. doi: https://doi.org/10.1111/j.1420-9101.2005.00962.x

Bishop, Y., Fienberg, S., & Holland, P. (1975). Discrete Multivariate Analysis: Theory and Practice. Cambridge, MA: MIT Press.

Cairns, J. Jr. (2013). Stress, Environmental. In Encyclopedia of Biodiversity, (2nd Ed.) (Vol. 7, pp. 39–44). Waltham, MA: Academic Press.

Chuvieco, E., Englefield, P., Trishchenko, A.P., & Luo, Y. (2008). Generation of long time series of burn area maps of the boreal forest from NOAA-AVHRR composite data. Remote Sensing of Environment, 112(5), 2381–2396. doi: https://doi.org/10.1016/j.rse.2007.11.007

Congalton, R. & Green, K., (2009). Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. Boca Raton, FL: CRC Press. Retrieved from https://books.google.rs/books?hl=en&lr=&id=T4zj2bnGldEC&oi=fnd&pg=PP1&dq=Assessing+the+Accuracy+of+Remotely+Sensed+Data:+Principles+and+Practices+2008+&ots=RSmAbpi-XB&sig=kpCmHw3_b5a6M4E8Uab2PoZOHwo&redir_esc=y#v=onepage&q=Assessing%20the%20Accuracy%20of%20Remotely%20Sensed%20Data%3A%20Principles%20and%20Practices%202008&f=false

Díaz-Delgado, R., Lloret, F., & Pons, X. (2003). Influence of fire severity on plant regeneration by means of remote sensing imagery. International Journal of Remote Sensing, 24(8), 1751–1763. doi: https://doi.org/10.1080/01431160210144732

Duncan, B. W., Shao, G. & Adrian, F. W. (2009). Delineating a managed fire regime and exploring its relationship to the natural fire regime in East Central Florida, USA: a remote sensing and GIS approach. Forest Ecology and Management, 258(2), 132–145. doi: https://doi.org/10.1016/j.foreco.2009.03.053

Dwyer, J., Pinnock, S., Grégoire, J.-M., Pereira, J. M. C. (2000). Global spatial and temporal distribution of vegetation fire as determined from satellite observations. International Journal of Remote Sensing, 21(6–7), 1289–1302. doi: https://doi.org/10.1080/014311600210182

Fraser, R. H., Fernandes, R. & Latifovic, R. (2003). Multi-temporal mapping of burned forest over Canada using satellite-based change metrics. Geocarto International, 18(2), 37–47. doi: https://doi.org/10.1080/10106040308542271

Freedman, B. (2015). Ecological Effects of Environmental Stressors. Oxford: Oxford Research Encyclopedia of Environmental Science. doi: https://doi.org/10.1093/acrefore/9780199389414.013.1

García, M. & Chuvieco, E. (2004). Assessment of the potential of SAC-C/MMRS imagery for mapping burned areas in Spain. Remote Sensing of Environment, 92(3), 414–423. doi: https://doi.org/10.1016/j.rse.2004.04.011

GFMC (2008). Republic of Serbia — Forest Fires in 2007. International Forest Fire News (IFFN), 37, 41–47. Retrieved from http://www.fire.uni-freiburg.de/iffn/iffn_37/09-IFFN-37-Serbia.pdf

Giglio, L., Csiszar, I., & Justice, C.O. (2006). Global distribution and seasonality of fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. Journal of Geophysical Research, 111(G2). doi: https://doi.org/10.1029/2005JG000142

Giglio, L., Csiszar, I., Restás, Á., Morisete, J. T., Schroeder, W., Morton, D., & Justice, C. O. (2008). Active fire detection and characterization with the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Remote Sensing of Environment, 112(6), 3055–3063. doi: https://doi.org/10.1016/j.rse.2008.03.003

Howard, S. M. & Lacasse, J. M. (2004). An evaluation of gap-filled Landsat SLC-Off imagery for wildland fire burn severity mapping. Photogrammetric Engineering and Remote Sensing, 701(8), 877–880. Retrieved from https://pubs.er.usgs.gov/publication/70156729

Jakšić, P. (Ed.). (2008). Prime Butterfly Areas: A Tool for Nature Conservation in Serbia. Belgrade, Serbia: HabiProt.

Jia, G. J., Burke, I. C., Kaufmann, M. R., Goetz, A. F. H., Kindel, B. C. & Pu, Y. (2006). Estimates of forest canopy fuel attributes using hyperspectral data. Forest Ecology and Management, 229(1–3), 27–38. doi: https://doi.org/10.1016/j.foreco.2006.03.021

Key, C. H., & Benson, N. C. (1999). The Normalized Burn Ratio (NBR): A Landsat TM Radiometric Index of Burn Severity. Retrieved from https://archive.usgs.gov/archive/sites/www.nrmsc.usgs.gov/files/norock/products/SEVER36_im_copy6.pdf

Key, C. H. & Benson, N. C. (2004). Remote Sensing Measure of Severity: The Normalized Burn Ratio. FIREMON Landscape Assessment (LA) V4 Sampling and Analysis Methods. Collins, CO: USFS Rocky Mountain Research Station.

Landsat 5, USGS EarthExplorer (2017). Retrieved from https://earthexplorer.usgs.gov/

Landsat Surface Reflectance Higher-Level Data Products (2017). Retrieved from https://landsat.usgs.gov/landsat-surface-reflectance-high-level-data-products

Lindgren, B. & Laurila, A. (2005). Proximate causes of adaptive growth rates: growth efficiency variation among latitudinal populations of Rana temporaria. Journal of Evolutionary Biology, 18(4), 820–828. doi: https://doi.org/10.1111/j.1420-9101.2004.00875.x

López García, M. J., & Caselles, V. (1991). Mapping burns and natural reforestation using thematic mapper data. Geocarto International, 6(1), 31–37. doi: https://doi.org/10.1080/10106049109354290

Marković, V., Nagy, I., Sik, A., Perge, K., Laszlo, P., Papathoma-Köhle, M., Promper, C. & Glade, T. (2016). Assessing drought and drought-related wildfire risk in Kanjiza, Serbia: the SEERISK methodology. Natural Hazards, 80(2), 709–726. doi: https://doi.org/10.1007/s11069-015-1991-4

Miller, J. D. & Yool, S. R. (2002). Mapping forest post-fire canopy consumption in several overstory types using multi-temporal Landsat TM and ETM data. Remote Sensing of Environment, 82(2–3), 481–496. doi: https://doi.org/10.1016/S0034-4257(02)00071-8

Мilоvаnоvić, B. (2010). Climate of the mountain Stara Planina (Klimа Stаrе plаninе). Belgrade, Serbia: Geographical institute “Jovan Cvijić” SASA. Retrieved from http://www.gi.sanu.ac.rs/site/media/com_form2content/documents/c23/a113/f466/gijc_pi_075_bosko_milovanovic_srp.pdf

NASA (2017). How to Interpret Common False Color Images. Retrieved from https://earthobservatory.nasa.gov/Features/FalseColor/page6.php

Papp, B., & Erzberger, P. (2007). Contributions to the bryophyte flora of Western Stara Planina Mts (E Serbia). Studia Botanica Hungarica, 38, 95–123. Retrieved from http://publication.nhmus.hu/pdf/Studia/StudiaBotHung_2007_Vol_38_95.pdf

Patterson, M. W., & Yool, S. R. (1998). Mapping fire-induced vegetation mortality using Landsat Thematic Mapper data: A comparison of linear transformation techniques. Remote Sensing of Environment, 65(2), 132–142. doi: https://doi.org/10.1016/S0034-4257(98)00018-2

Portland State University (PDX). (2001). Band combinations. Retrieved from http://web.pdx.edu/~emch/ip1/bandcombinations.html

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. & Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825–2830. Retrieved from http://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf

Petrasova, A., Harmon, B., Petras, V., & Mitasova, H. (2015). Tangible Modeling with Open Source GIS. Springer International Publishing. doi: https://doi.org/10.1007/978-3-319-25775-4

QGIS Python Plugins Repository (2017). Retrieved from https://plugins.qgis.org/plugins/

Quintano, C., Fernández-Manso, A., Stein, A., & Bijker, W. (2011). Estimation of area burned by forest fires in Mediterranean countries: A remote sensing data mining perspective. Forest Ecology and Management, 262(8), 1597–1607.doi: https://doi.org/10.1016/j.foreco.2011.07.010

Radovanović, M., & Gomes, J. F. P. (2009). Solar Activity and Forest Fires. New York, NY: Nova Science Publishers.

Radovanović, M., Gomes, J. F. P., Yamashkin, A. A., Milenković, M., & Stevančević, M. (2017) Electrons or protons: what is the cause of forest fires in western Europe on June 18, 2017? Journal of the Geographical Institute “Jovan Cvijić” SASA, 67(2), 213–218. doi: https://doi.org/10.2298/IJGI1702213R

Ranđelović, N., Đorđević, D., Zlatković, B., & Avramović, D. (2004). Svrljiške planine refugijum endemičnih biljnih vrsta i fitocenoza. XII Naučno-stručni skup „EkoIst’04” sa međunarodnim učešćem, Ekološka istina, Zbornik radova, Bor, 30.05–02.06.2004. Tehnički fakultet u Boru — Univerzitet u Beogradu. Retrieved from https://www.researchgate.net/publication/319905104_SVRLJISKE_PLANINE_REFUGIJUM_ENDEMICNIH_BILJNIH_VRSTA_I_FITOCENOZA_SVRLJISKE_PLANINE_MOUNTAINS_REFUGE_OF_ENDEMIC_PLANT_SPECIES_AND_PHYTOCENOSES

Ranđelović, V., & Zlatković, B. (1998). Campanula calycialata (series Saxicolae Witasek), a new species from Serbia (Yugoslavia). Flora Mediterranea, 8, 85–92.

Roy, D. P., Boschetti, L., & Trigg, S. N. (2006). Remote sensing of fire severity: Assessing the performance of the normalized burn ratio. IEEE Geoscience and Remote Sensing Letters,3(1), 112–116. doi: https://doi.org/10.1109/LGRS.2005.858485

Roy, D., Wulder, M. A., Loveland, T. R., Woodcock, C. E., Allen, R. G., Anderson, M. C., Helder, D., Irons, J. R., Johnson, D. M., Kennedy, R., Scambos, T. A., Schaaf, C. B., Schott, J. R., Sheng, Y., Vermote, E. F., Belward, A. S., Bindschadler, R., Cohen, W. B., Gao, F., Hipple, J. D., Hostert, P., Huntington, J., Justice, C. O., Kilic, A., Kovalskyy, V., Lee, Z. P., Lymburner, R., Masek, J. G., McCorkel, J., Shuai, Y., Trezza, R., Vogelmann, J., Wynne, R. H., & Zhu, Z. (2014). Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145, 154–172. doi: https://doi.org/10.1016/j.rse.2014.02.001

Salvador, R., Valeriano, J., Pons, X., & Díaz-Delgado, R. (2000). A semi-automatic methodology to detect fire scars in shrubs and evergreen forests with Landsat MSS time series. International Journal of Remote Sensing, 21(4), 655–671. doi: https://doi.org/10.1080/014311600210498

Santos, T. G., Caetano, M. R., Barbosa, P. M., & Paúl, J. U. (1999). A comparative study of vegetation indices to assess land cover change after forest fires. Remote Sensing for Earth Science, Ocean, and Sea Ice Applications, 3868. doi: http://dx.doi.org/10.1117/12.373108

Schroeder, W., Oliva, P., Giglio, L., Quayle, B., Lorenz, E., & Morelli, F. (2015). Active fire detection using Landsat-8/OLI data. Remote Sensing of Environment, 185, 210–220. doi: https://doi.org/10.1016/j.rse.2015.08.032

Smith, A. M., Drake, N. A., Wooster, M. J., Hudak, A. T., Holden, Z. A., & Gibbons, C. J. (2007). Production of Landsat ETM+ reference imagery of burned areas within Southern African savannahs: comparison of methods and application to MODIS. International Journal of Remote Sensing, 28(12), 2753–2775. doi: https://doi.org/10.1080/01431160600954704

Sørensen, J. G., Norry, F. M., Scannapieco, A. C. & Loeschcke, V. (2005). Altitudinal variation for stress resistant traits and thermal adaptation in adult Drosophila buzzatii from the New World. Journal of Evolutionary Biology, 18(4), 829–837. doi: https://doi.org/10.1111/j.1420-9101.2004.00876.x

SRTM 1 Arc-Second Global, USGS Earth Explorer (2017). Retrieved from https://earthexplorer.usgs.gov/

Statistical Office of the Republic of Serbia (2010). Statistical Pocketbook of Serbia 2010 (Statistički kalendar Srbije 2010). Belgrade: Statistical Office of the Republic of Serbia. Retrieved from http://pod2.stat.gov.rs/ObjavljenePublikacije/G2010/pdf/G20102004.pdf

Stevanović, V., Vukojičić, S., Šinžar-Sekulić, J., Lazarević, M., Tomović, G., & Tan, K. (2009). Distribution and diversity of Arctic-Alpine species in the Balkans. Plant Systematics and Evolution, 289, 219–235. doi: https://doi.org/10.1007/s00606-009-0230-4

Stojanović, M., Tsekova, R., Pešić, S., Milanović, J., & Milutinović, T. (2013). Diversity and a biogeographical review of the earthworms (Oligochaeta: Lumbricidae) of the Balkan Mountains (Stara Planina Mountains) in Serbia and Bulgaria. Turkish Journal of Zoology, 37, 635–642. doi: https://doi.org/10.3906/zoo-1301-33

Stroppiana, D., Bordogna, G., Carrara, P., Boschetti, M., & Brivio, P. A. (2012). A method for extracting burned areas from Landsat TM/ETM+ images by soft aggregation of multiple Spectral Indices and a region growing algorithm. ISPRS Journal of Photogrammetry and Remote Sensing, 69, 88–102. doi: https://doi.org/10.1016/j.isprsjprs.2012.03.001

van Wagtendonk, J. W., Root, R. R. & Key, C. H. (2004). Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity. Remote Sensing of Environment, 92(3), 397–408. doi: https://doi.org/10.1016/j.rse.2003.12.015

White, J. D., Ryan, K. C., Key, C. C. & Running, S. W. (1996). Remote sensing of forest fire severity and vegetation recovery. International Journal of Wildland Fire, 6(3), 125–136. doi: https://doi.org/10.1071/WF9960125

Zeremski, M. (2008). Kras Svrljiških planina. Zbornik radova Odbora za kras i speleologiju. Posebna izdanja, DCLXIII, 2–22.

www.jpstaraplanina.rs

www.zzps.rs

Downloads

Published

2017-12-23

How to Cite

Potić, I. M., Ćurčić, N. B., Potić, M. M., Radovanović, M. M., & Tretiakova, T. N. (2017). REMOTE SENSING ROLE IN ENVIRONMENTAL STRESS ANALYSIS: ЕАST SERBIA WILDFIRES CASE STUDY (2007–2017). Journal of the Geographical Institute “Jovan Cvijić” SASA, 67(3), 249–264. https://doi.org/10.2298/IJGI1703249P

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.