GEOINFORMATION TECHNOLOGIES IN THE EVALUATION OF SHORT-TERM GEOMORPHIC CHANGE: AN EXAMPLE OF DAMDERE DEBRIS FLOOD AREA (BULGARIA)
DOI:
https://doi.org/10.2298/IJGI2202133NKeywords:
debris flood, TLS, point cloud, GIS, topographic changeAbstract
A debris flood is a hazardous hydrogeomorphic process that can change the topographic surface in a short time due to a high streamflow and a large volume of sediment transport. Large areas of the Eastern Rhodopes Mountains (Bulgaria) are susceptible to erosion, debris flows, and debris floods due to loose earth masses, rare vegetation, and alternating dry and wet periods with extreme rainfall. The study area is located in the lower part of the river Damdere catchment and covers the area around the check dam. Studying the geomorphic changes of the debris flood areas can provide information about the behavior of the event, and contribute to the development of mitigation measures. In the current research, the data are obtained using terrestrial laser scanning (TLS) during two campaigns (in October 2019 and August 2021). After processing the raw TLS data, two pairs of ground point clouds have been obtained—for the area immediately before the check dam and for the one after the dam. To evaluate the changes in the topographic surface, two approaches are applied: (1) measuring the distance between the successive point clouds (M3C2 algorithm) and (2) measuring the differences between the digital terrain models in geographic information system environment (DoD method). Both approaches have shown similar results and indicated active hydrogeomorphic processes. The relatively large volume of deposition after the check dam is an indicator for the decrease in the retaining capacity of the check dam, which is a prerequisite for the increase of a flood risk.Article metrics
References
Aigner, P., Kuschel, E., Zangerl, C., Hübl, J., Hrachowitz, M., Sklar, L., & Kaitna, R. (2021, April 19–30). Multi-sensor approach towards understanding debris-flow activity in the Lattenbach catchment, Austria. EGU General Assembly 2021, EGU21-15399, https://doi.org/10.5194/egusphere-egu21-15399
Baltakova, A., Nikolova, V., Kenderova, R., & Hristova, N. (2018). Analysis of debris flows by application of GIS and remote sensing: case study of western foothills of Pirin Mountain (Bulgaria). In S. S. Chernomorets & G. V. Gavardashvili (Eds.), Debris Flows: Disasters, Risk, Forecast, Protection. Proceedings of the 5th International Conference (pp. 22–32). Publishing House “Universal”. http://www.debrisflow.ru/wp-content/uploads/2018/10/Baltakova_DF18.pdf
Blasone, G., Cavalli, M., Marchi, L., & Cazorzi, F. (2014). Monitoring sediment source areas in a debris-flow catchment using terrestrial laser scanning. Catena, 123, 23–36. http://dx.doi.org/10.1016/j.catena.2014.07.001
Bovis, M. J., & Jakob, M. (1999). The role of debris supply conditions in predicting debris flow activity. Earth Surface Processes and Landforms, 24(11), 1039–1054. https://onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1096-9837(199910)24:11%3C1039::AID-ESP29%3E3.0.CO;2-U
Bruchev, Il., Frangov, G., & Yanev, Y. (2001). Katastrofalni yavleniya v Iztochnite Rodopi [Catastrophic phenomena in the Eastern Rhodopes]. Mining and Geology, 6, 33–36.
Cavalli, M., Goldin, B., Comiti, F., Brardinoni, F., & Marchi, L. (2017). Assessment of erosion and deposition in steep mountain basins by differencing sequential digital terrain models. Geomorphology, 291, 4–16. https://doi.org/10.1016/j.geomorph.2016.04.009
Costa, J. E. (1984). Physical geomorphology of debris flows. In J. E. Costa & P. J. Fleisher (Eds.), Developments and applications of geomorphology (pp. 268–317). Springer. https://doi.org/10.1007/978-3-642-69759-3_9
Costa, J. E. (1988). Rheologic, geomorphic, and sedimentologic differentiation of water floods, hyperconcentrated flows, and debris flows. In V. R. Baker, R. C. Kochel, & P. C. Patton (Eds.), Flood Geomorphology (pp. 113–122). Wiley.
Dhote, P. R., Thakur, P. K., Chouksey, A., Srivastav, S. K., Raghvendra, S., Rautela, P., Ranjan, R., Allen, S., Stoffel, M., Bisht, S., Negi, B. S., Aggarwal, S. P., & Chauhan, P. (2022). Synergistic analysis of satellite, unmanned aerial vehicle, terrestrial laser scanner data and process-based modelling for understanding the dynamics and morphological changes around the snout of Gangotri Glacier, India. Geomorphology, 396, Article 108005. https://doi.org/10.1016/j.geomorph.2021.108005
Dobrev, N., & Georgieva, M. (2010). Kalno-kamenniteporoi v severnata chast na Kresnenskoto defile: harakteristika na zonata na podhranvane i svoistva na izgrazhdashtite ya materiali [The debris flow in the northern part of Kresna Gorge: characterization of the source zone and material properties]. Review of the Bulgarian Geological Society, 71(1–3), 113–121. http://dx.doi.org/10.13140/RG.2.1.1314.1601
Dobrev, N., Ivanov, P., Varbanov, R., Frangov, G., Berov, B., Bruchev, I., Krastanov, M., & Nankin, R. (2013). Landslide Problems in Bulgaria: Factors, Distribution and Countermeasures. In C. Margottini, P. Canuti, K. Sassa (Eds.), Landslide Science and Practice: Vol. 7. Social and Economic Impact and Policies (pp. 187–193). Springer. https://doi.org/10.1007/978-3-642-31313-4_24
Dotseva, Z., Vangelov, D., & Gerdjikov, I. (2021). Proyava na kalno-kamenni pototsi I debritni priizhdaniq vav vodosbora na rka Ribnishka (yuzhnite sklonove na Ograzhden) [Debris flows and debris floods occurrence in the Ribnishka River watershed (southern slopes of Ograzhden Mountain)]. Review of the Bulgarian Geological Society, 82(3), 165–167. https://doi.org/10.52215/rev.bgs.2021.82.3.165
European Climate Assessment & Dataset. (n.d.). Indices dictionary. ECA&D. https://www.ecad.eu/indicesextremes/indicesdictionary.php
EDF R&D. (2022). CloudCompare (Version 2.12 beta) [GPL software]. https://www.cloudcompare.org/
ESRI. (2021). ArcGIS Pro 2.9 [Computer software]. Environmental Systems Research Institute. https://www.esri.com/en-us/home
Gexcel Srl. (2016). JRC 3D Reconstructor 3 (Version 3.2.1.584) [Computer software]. https://www.geo3d.hr/software/gexcel/jrc-3d-reconstructorr
Google Earth Pro (Version 7.3.4.8642) [Computer software]. (2022). https://www.google.com/intl/en/earth/versions/
Heckmann, T., & Vericat, D. (2018). Computing spatially distributed sediment delivery ratios: inferring functional sediment connectivity from repeat high-resolution digital elevation models. Earth Surface Processes and Landforms, 43(7), 1547–1554. https://doi.org/10.1002/esp.4334
Ilinca, V. (2021). Using morphometrics to distinguish between debris flow, debris flood and flood (Southern Carpathians, Romania). Catena, 197, Article 104982. https://doi.org/10.1016/j.catena.2020.104982
Jackson, L. E., Kostaschuk, R. A., & MacDonald, G. M. (1987). Identification of debris flow hazard on alluvial fans in the Canadian Rocky Mountains. In J. E. Costa & G. F. Wieczorek (Eds.), Debris Flows/Avalanches: Process, Recognition, and Mitigation (pp. 115–124). Geological Society of America. https://doi.org/10.1130/REG7-p115
James, L. A., Hodgson, M. E., Ghoshal, S., & Latiolais, M. M. (2012). Geomorphic change detection using historic maps and DEM differencing: The temporal dimension of geospatial analysis. Geomorphology, 137(1), 181–198. https://doi.org/10.1016/j.geomorph.2010.10.039
Kamburov, A., & Nikolova, V. (2020). 3D modelling in GIS environment for the purpose of debris flow analysis – a case study of the Eastern Rhodopes (Bulgaria). In T. Bandrova, M. Konečný, & S. Marinova (Eds.), 8th International Conference on Cartography and GIS (Vol. 1, pp. 278–286). Bulgarian Cartographic Association. https://iccgis2020.cartography-gis.com/8ICCGIS-Vol1/8ICCGIS_Proceedings_Vol1_2020-Optimized.pdf
Keilig, K., Dietrich, A., & Krautblatter, M. (2018). How to effectively monitor geomorphic changes in debris-flow channels. In S. S. Chernomorets & G. V. Gavardashvili (Eds.), Debris Flows: Disasters, Risk, Forecast, Protection. Proceedings of the 5th International Conference (pp. 123–129). Publishing House “Universal”. http://www.debrisflow.ru/wp-content/uploads/2018/10/Keilig_DF18.pdf
Kenderova, R., Baltakova, A., & Ratchev, G. (2013). Debris Flows in the Middle Struma Valley, Southwest Bulgaria. In D. Lóczy (Ed.), Geomorphological Impacts of Extreme Weather: Case Studies from Central and Eastern Europe (pp. 281–297). https://doi.org/10.1007/978-94-007-6301-2_18
Krenchev, D., Kenderova, R., Matev, S., Nikolova, N., Rachev, G., & Gera, M. (2021). Debris Flows in Kresna Gorge (Bulgaria)—Geomorphological Characteristics and Weather Conditions. Journal of the Geographical Institute “Jovan Cvijić” SASA, 71(1), 15–27. https://doi.org/10.2298/IJGI2101015K
Lague, D., Brodu, N., & Leroux, J. (2013). Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z). ISPRS Journal of Photogrammetry and Remote Sensing, 82, 10–26. https://doi.org/10.1016/j.isprsjprs.2013.04.009
Li, Y., Liu, P., Li, H., & Huang, F. (2021). A Comparison Method for 3D Laser Point Clouds in Displacement Change Detection for Arch Dams. ISPRS International Journal of Geo-Information, 10(3), Article 184. https://doi.org/10.3390/ijgi10030184
Llena, M., Vericat, D., Smith, M. W., & Wheaton, J. M. (2020). Geomorphic process signatures reshaping sub-humid Mediterranean badlands: 1. Methodological development based on high-resolution topography. Earth Surface Processes and Landforms, 45(5), 1335–1346. https://doi.org/10.1002/esp.4821
Loye, A., Jaboyedoff, M., Theule, J. I., & Liébault, F. (2016). Headwater sediment dynamics in a debris flow catchment constrained by high-resolution topographic surveys. Earth Surface Dynamics, 4(2), 489–513. https://doi.org/10.5194/esurf-4-489-2016
National Institute of Meteorology and Hydrology, Bulgaria. (n.d.). Daily precipitation data was retrieved for the period 25.10.2019 – 27.08.2021. https://hydro.bg/bg/t1.php?ime=&gr=data/&gn=dajd
Nikolova, V., Kamburov, A., & Rizova, R. (2020). Modelling and assessment of debris flow erosion and deposition using geoinformation technologies. Journal of Mining and Geological Sciences, 63, 232–237. https://mgu.bg/wp-content//uploads/resources/Journal-of-MG-Sciences-63-2020.pdf
Nikolova, V., Kamburov, A., & Rizova, R. (2021). Morphometric analysis of debris flows basins in the Eastern Rhodopes (Bulgaria) using geospatial technologies. Natural Hazards, 105, 159–175, https://doi.org/10.1007/s11069-020-04301-4
Nikolova, N., Matev, S., & Pophristov, V. (2021). Rainfall erosivity and extreme precipitation months – a comparison between the regions of Lovech and Kardzhali (Bulgaria). In O. Trofymchuk & B. Rivza (Eds.), 21st International Multidisciplinary Scientific GeoConference SGEM 2021 (Vol. 21, Book 3.1, pp. 389–396). https://doi.org/10.5593/sgem2021/3.1/s13.64
Petrović, A., Kostadinov, S., & Dragićević, S. (2014). The Inventory and Characterization of Torrential Flood Phenomenon in Serbia. Polish Journal of Environmental Studies, 23(3), 823–830. http://www.pjoes.com/pdf-89253-23111?filename=The%20Inventory%20and.pdf
Petrović, A. M., Novković, I., & Kostadinov, S. (2021). Hydrological analysis of the September 2014 torrential floods of the Danube tributaries in the Eastern Serbia. Natural Hazards, 108, 1373–1387. https://doi.org/10.1007/s11069-021-04737-2
Picco, L., Mao, L., Cavalli, M., Buzzi, E., Rainato, R., & Lenzi, M. A. (2013). Evaluating short-term morphological changes in a gravel-bed braided river using terrestrial laser scanner. Geomorphology, 201, 323–334. https://doi.org/10.1016/j.geomorph.2013.07.007
Pierson, T. C. (2005). Distinguishing between debris flows and floods from field evidence in small watersheds [Fact Sheet 2004-3142]. United States Geological Survey. https://doi.org/10.3133/fs20043142
Pierson, T., & Costa, J. (1987). A rheologic classification of subaerial sediment-water flows. In J. E. Costa & G. F. Wieczorek (Eds.), Debris Flows/Avalanches: Process, Recognition, and Mitigation (Vol. 7, pp. 1–12). Geological Society of America.
Rączkowska, Z., & Cebulski, J. (2022). Quantitative assessment of the complexity of talus slope morphodynamics using multi-temporal data from terrestrial laser scanning (Tatra Mts., Poland). Catena, 209(Part 1), Article 105792. https://doi.org/10.1016/j.catena.2021.105792
Rainato, R., Picco, L., Cavalli, M., Mao, L., Delai, F., Ravazzolo, D., & Lenzi, M. A. (2013). Evaluation of short-term geomorphic changes along the Tagliamento river using LiDAR and terrestrial laser scanner surveys. Journal of Agricultural Engineering, 44(s2), 80–84. https://doi.org/10.4081/jae.2013.256
Rizova, R., & Nikolova, V. (2021). Geomorphological and sedimentological characteristics of debris flows in the river Buyukdere watershed (Eastern Rhodopes, Bulgaria). In O. Trofymchuk & B. Rivza (Eds.), 21st International Multidisciplinary Scientific GeoConference SGEM 2021 (pp. 43–50). STEF92 Technology. https://doi.org/10.5593/sgem2021/1.1/s01.007
Sarov, S., Jordanov, B., Valkov, V., Georgiev, S., Kamburov, D., Raeva, E., Grozdev, V., Balkanska, E., Moskovska, L., Dobrev, G., & Kalinova, I. (2007). Geological Map of Republic of Bulgaria, Scale 1:50000 (Map sheet Ardino). Ministry of Environment and Water, Bulgarian Geological Survey.
Sarov, S., Jordanov, B., Valkov, V., Georgiev, S., Kamburov, D., Raeva, E., Grozdev, V., Balkanska, E., Moskovska, L., & Dobrev, G. (2007). Geological Map of Republic of Bulgaria, Scale 1:50000 (Map sheet Kardzgaly). Ministry of Environment and Water, Bulgarian Geological Survey.
Schürch, P., Densmore, A. L., Rosser, N. J., Lim, M., & McArdell, B. (2011). Detection of surface change in complex topography using terrestrial laser scanning: Application to the Illgraben debris-flow channel. Earth Surface Processes and Landforms, 36(14), 1847–1859. https://doi.org/10.1002/esp.2206
Slaymaker, O. (1988). The distinctive attributes of debris torrents. Hydrological Sciences Journal, 33(6), 567–573. https://doi.org/10.1080/02626668809491290
Topliiski, D. (2006). Klimat na Balgaria [Climate of Bulgaria]. Amstels Foundation.
United States Geological Survey, Earth Resources Observation and Science Center. (2014). Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global data [Data set]. https://doi.org/10.5066/F7PR7TFT
Wilford, D. J., Sakals, M. E., Innes, J. L., Sidle, R. C., & Bergerud, W. A. (2004). Recognition of debris flow, debris flood and flood hazard through watershed morphometrics. Landslides, 1, 61–66. https://doi.org/10.1007/s10346-003-0002-0
Zhang, W., Qi, J., Wan, P., Wang, H., Xie, D., Wang, X., & Yan, G. (2016). An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sensing, 8(6), Article 501. https://doi.org/10.3390/rs8060501
Zhou, W., Tang, C., Van Asch, T. W. J., & Chang, M. (2015). A rapid method to identify the potential of debris flow development induced by rainfall in the catchments of the Wenchuan earthquake area. Landslides, 13, 1243–1259. https://doi.org/10.1007/s10346-015-0631-0
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Journal of the Geographical Institute “Jovan Cvijić” SASA
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.